Edit model card

out

This model is a fine-tuned version of /1TB_SSD/SB_AI/out_epoch1/out/checkpoint-1115000/ on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0645

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 2518227880
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
0.0867 0.07 75000 0.0742
0.0783 0.13 150000 0.0695
0.0719 0.2 225000 0.0732
0.0743 0.27 300000 0.0663
0.0659 0.34 375000 0.0686
0.0664 0.4 450000 0.0683
0.0637 0.47 525000 0.0680
0.0655 0.54 600000 0.0641
0.0676 0.6 675000 0.0644
0.0704 0.67 750000 0.0645
0.0687 0.74 825000 0.0610
0.059 0.81 900000 0.0652
0.0666 0.87 975000 0.0619
0.0624 0.94 1050000 0.0619
0.0625 1.01 1125000 0.0667
0.0614 1.03 1150000 0.0658
0.0597 1.05 1175000 0.0683
0.0629 1.07 1200000 0.0691
0.0603 1.1 1225000 0.0678
0.0601 1.12 1250000 0.0746
0.0606 1.14 1275000 0.0691
0.0671 1.16 1300000 0.0702
0.0625 1.19 1325000 0.0661
0.0617 1.21 1350000 0.0688
0.0579 1.23 1375000 0.0679
0.0663 1.25 1400000 0.0634
0.0583 1.28 1425000 0.0638
0.0623 1.3 1450000 0.0681
0.0615 1.32 1475000 0.0670
0.0592 1.34 1500000 0.0666
0.0626 1.37 1525000 0.0666
0.063 1.39 1550000 0.0647
0.0648 1.41 1575000 0.0653
0.0611 1.43 1600000 0.0700
0.0622 1.46 1625000 0.0634
0.0617 1.48 1650000 0.0651
0.0613 1.5 1675000 0.0634
0.0639 1.52 1700000 0.0661
0.0615 1.54 1725000 0.0644
0.0605 1.57 1750000 0.0662
0.0622 1.59 1775000 0.0656
0.0585 1.61 1800000 0.0633
0.0628 1.63 1825000 0.0625
0.0638 1.66 1850000 0.0662
0.0599 1.68 1875000 0.0664
0.0583 1.7 1900000 0.0668
0.0543 1.72 1925000 0.0631
0.06 1.75 1950000 0.0629
0.0615 1.77 1975000 0.0644
0.0587 1.79 2000000 0.0663
0.0647 1.81 2025000 0.0654
0.0604 1.84 2050000 0.0639
0.0641 1.86 2075000 0.0636
0.0604 1.88 2100000 0.0636
0.0654 1.9 2125000 0.0652
0.0588 1.93 2150000 0.0638
0.0616 1.95 2175000 0.0657
0.0598 1.97 2200000 0.0646
0.0633 1.99 2225000 0.0645

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.1+cu113
  • Datasets 1.17.0
  • Tokenizers 0.10.3
Downloads last month
0
Hosted inference API
This model can be loaded on the Inference API on-demand.

Space using EColi/sponsorblock-base-v1 1