DunnBC22's picture
update model card README.md
8a04648
|
raw
history blame
2.75 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-Landscape_Recognition
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.866

vit-base-patch16-224-in21k-Landscape_Recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5122
  • Accuracy: 0.866
  • Weighted f1: 0.8678
  • Micro f1: 0.866
  • Macro f1: 0.8678
  • Weighted recall: 0.866
  • Micro recall: 0.866
  • Macro recall: 0.866
  • Weighted precision: 0.8710
  • Micro precision: 0.866
  • Macro precision: 0.8710

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted f1 Micro f1 Macro f1 Weighted recall Micro recall Macro recall Weighted precision Micro precision Macro precision
0.2866 1.0 625 0.4308 0.8487 0.8538 0.8487 0.8538 0.8487 0.8487 0.8487 0.8700 0.8487 0.8700
0.1522 2.0 1250 0.4648 0.8687 0.8694 0.8687 0.8694 0.8687 0.8687 0.8687 0.8714 0.8687 0.8714
0.0609 3.0 1875 0.5122 0.866 0.8678 0.866 0.8678 0.866 0.866 0.866 0.8710 0.866 0.8710

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3