File size: 2,042 Bytes
45af3b1
 
 
 
 
 
b7b03cf
45af3b1
 
 
 
 
 
 
 
 
 
 
b7b03cf
45af3b1
b7b03cf
45af3b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-Math-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: prm_qwen25_math_version3_subsample_hf
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# prm_qwen25_math_version3_subsample_hf

This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the prm_conversations_prm_version3_math+webinstructsub-mcq+webinstructsub-oe+apps+gsm_mix_ref_subsample_hf dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1639

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2317        | 0.1127 | 500  | 0.2231          |
| 0.2003        | 0.2253 | 1000 | 0.2006          |
| 0.166         | 0.3380 | 1500 | 0.1876          |
| 0.1755        | 0.4506 | 2000 | 0.1788          |
| 0.1612        | 0.5633 | 2500 | 0.1725          |
| 0.1607        | 0.6759 | 3000 | 0.1680          |
| 0.1655        | 0.7886 | 3500 | 0.1653          |
| 0.1486        | 0.9012 | 4000 | 0.1641          |


### Framework versions

- Transformers 4.45.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3