mistral-lora
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.6352
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1399
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7822 | 0.0221 | 20 | 1.6700 |
1.6214 | 0.0443 | 40 | 1.5494 |
1.5335 | 0.0664 | 60 | 1.4848 |
1.4679 | 0.0885 | 80 | 1.4369 |
1.4343 | 0.1107 | 100 | 1.3875 |
1.355 | 0.1328 | 120 | 1.3318 |
1.3334 | 0.1550 | 140 | 1.2785 |
1.2573 | 0.1771 | 160 | 1.2225 |
1.1879 | 0.1992 | 180 | 1.1666 |
1.1678 | 0.2214 | 200 | 1.1121 |
1.0723 | 0.2435 | 220 | 1.0540 |
1.049 | 0.2656 | 240 | 0.9982 |
0.9674 | 0.2878 | 260 | 0.9444 |
0.9192 | 0.3099 | 280 | 0.8952 |
0.8752 | 0.3320 | 300 | 0.8499 |
0.8079 | 0.3542 | 320 | 0.8086 |
0.7969 | 0.3763 | 340 | 0.7712 |
0.7547 | 0.3985 | 360 | 0.7355 |
0.6896 | 0.4206 | 380 | 0.7046 |
0.7037 | 0.4427 | 400 | 0.6803 |
0.6724 | 0.4649 | 420 | 0.6614 |
0.6869 | 0.4870 | 440 | 0.6470 |
0.6412 | 0.5091 | 460 | 0.6390 |
0.6605 | 0.5313 | 480 | 0.6357 |
0.6293 | 0.5534 | 500 | 0.6352 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for DoganK01/mistral-lora
Base model
mistralai/Mistral-7B-Instruct-v0.2