File size: 7,450 Bytes
de19672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeafb78
de19672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeafb78
de19672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: llama3
language:
- de
library_name: transformers
---
# Llama3_DiscoLeo_Instruct_8B_v0.1

## Thanks and Accreditation

[DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1](https://huggingface.co/collections/DiscoResearch/discoleo-8b-llama3-for-german-6650527496c0fafefd4c9729) 
is the result of a joint effort between [DiscoResearch](https://huggingface.co/DiscoResearch) and [Occiglot](https://huggingface.co/occiglot) 
with support from the [DFKI](https://www.dfki.de/web/) (German Research Center for Artificial Intelligence) and [hessian.Ai](https://hessian.ai). 
Occiglot kindly handled data preprocessing, filtering, and deduplication as part of their latest [dataset release](https://huggingface.co/datasets/occiglot/occiglot-fineweb-v0.5), as well as sharing their compute allocation at hessian.Ai's 42 Supercomputer.

## Model Overview

Llama3_DiscoLeo_Instruct_8B_v0 is an instruction tuned version of our [Llama3_German_8B](https://huggingface.co/DiscoResearch/Llama3_German_8B).
The base model was derived from [Meta's Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) through continuous pretraining on 65 billion high-quality German tokens, similar to previous [LeoLM](https://huggingface.co/LeoLM) or [Occiglot](https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01) models.
We finetuned this checkpoint on the German Instruction dataset from DiscoResearch created by [Jan-Philipp Harries](https://huggingface.co/jphme) and [Daniel Auras](https://huggingface.co/rasdani) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)).


## How to use
Llama3_DiscoLeo_Instruct_8B_v0.1 uses the [Llama-3 chat template](https://github.com/meta-llama/llama3?tab=readme-ov-file#instruction-tuned-models), which can be easily used with [transformer's chat templating](https://huggingface.co/docs/transformers/main/en/chat_templating).
See [below](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1#usage-example) for a usage example. 

## Model Training and Hyperparameters
The model was full-fintuned with axolotl on the [hessian.Ai 42](hessian.ai) with 8192 context-length, learning rate 2e-5 and batch size of 16.


## Evaluation and Results

We evaluated the model using a suite of common English Benchmarks and their German counterparts with [GermanBench](https://github.com/bjoernpl/GermanBenchmark).

In the below image and corresponding table, you can see the benchmark scores for the different instruct models compared to Metas instruct version. All checkpoints are available in this [collection](https://huggingface.co/collections/DiscoResearch/discoleo-8b-llama3-for-german-6650527496c0fafefd4c9729).

![instruct scores](instruct_model_benchmarks.png)

| Model                                             | truthfulqa  | truthful_qa_de | arc_challenge | arc_challenge_de | hellaswag   | hellaswag_de | MMLU     | MMLU_DE  | mean      |
|---------------------------------------------------|-------------|----------------|----------------|-------------------|-------------|--------------|----------|----------|-----------|
| DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1    | **0.530425**    | 0.528673       | 0.595563       | **0.538396**          | 0.807210| 0.664409     | 0.618989 | 0.560536 | **0.605525**|
| DiscoResearch/Llama3_DiscoLeo_Instruct_8B_32k_v0.1| 0.527493    | **0.532451**   | 0.587884       | 0.537543          | **0.807708**| **0.667098** | 0.621234 | **0.562389** | 0.605475   |
| meta-llama/Meta-Llama-3-8B-Instruct               | 0.516810    | 0.526288       | **0.613481**   | 0.498294          | 0.785401    | 0.562537     | **0.669585** | 0.558135   | 0.591316   |

## Model Configurations

We release DiscoLeo-8B in the following configurations:
1. [Base model with continued pretraining](https://huggingface.co/DiscoResearch/Llama3_German_8B)
2. [Long-context version (32k context length)](https://huggingface.co/DiscoResearch/Llama3_German_8B_32k)
3. [Instruction-tuned version of the base model](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1) (This model)
4. [Instruction-tuned version of the long-context model](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_32k_v0.1)
5. [Experimental `DARE-TIES` Merge with Llama3-Instruct](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_8B_DARE_Experimental)
6. [Collection of Quantized versions](https://huggingface.co/collections/DiscoResearch/discoleo-8b-quants-6651bcf8f72c9a37ce485d42)

## Usage Example
Here's how to use the model with transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
    "DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1")

prompt = "Schreibe ein Essay über die Bedeutung der Energiewende für Deutschlands Wirtschaft"
messages = [
    {"role": "system", "content": "Du bist ein hilfreicher Assistent."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

## Acknowledgements

The model was trained and evaluated by [Björn Plüster](https://huggingface.co/bjoernp) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)) with data preparation and project supervision by [Manuel Brack](http://manuel-brack.eu) ([DFKI](https://www.dfki.de/web/), [TU-Darmstadt](https://www.tu-darmstadt.de/)). Instruction tuning was done with the DiscoLM German dataset created by [Jan-Philipp Harries](https://huggingface.co/jphme) and [Daniel Auras](https://huggingface.co/rasdani) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)). We extend our gratitude to [LAION](https://laion.ai/) and friends, especially  [Christoph Schuhmann](https://entwickler.de/experten/christoph-schuhmann) and [Jenia Jitsev](https://huggingface.co/JJitsev), for initiating this collaboration.

The model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/)  which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)).
The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)
through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).