File size: 5,277 Bytes
f22a3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
base_model:
- DewEfresh/neo_7b
- DewEfresh/neo_7b
tags:
- merge
- mergekit
- lazymergekit
- DewEfresh/neo_7b
---

# Neo_7b-merge14

Neo_7b-merge14 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [DewEfresh/neo_7b](https://huggingface.co/DewEfresh/neo_7b)
* [DewEfresh/neo_7b](https://huggingface.co/DewEfresh/neo_7b)

## 🧩 Configuration

```yaml
# Define the slices for the model merging process
slices:
  - sources:
      # First part: merge layer 0 with layer 3
      - model: DewEfresh/neo_7b
        layer_range: [0, 0]
      - model: DewEfresh/neo_7b
        layer_range: [3, 3]
  - sources:
      # Second part: merge layer 1 with layer 3
      - model: DewEfresh/neo_7b
        layer_range: [1, 1]
      - model: DewEfresh/neo_7b
        layer_range: [3, 3]
  - sources:
      # Third part: merge layer 2 with layer 3
      - model: DewEfresh/neo_7b
        layer_range: [2, 2]
      - model: DewEfresh/neo_7b
        layer_range: [3, 3]
  - sources:
      # Fourth part: merge layer 4 with layer 7
      - model: DewEfresh/neo_7b
        layer_range: [4, 4]
      - model: DewEfresh/neo_7b
        layer_range: [7, 7]
  - sources:
      # Fifth part: merge layer 5 with layer 7
      - model: DewEfresh/neo_7b
        layer_range: [5, 5]
      - model: DewEfresh/neo_7b
        layer_range: [7, 7]
  - sources:
      # Sixth part: merge layer 6 with layer 7
      - model: DewEfresh/neo_7b
        layer_range: [6, 6]
      - model: DewEfresh/neo_7b
        layer_range: [7, 7]
  - sources:
      # Seventh part: merge layer 8 with layer 11
      - model: DewEfresh/neo_7b
        layer_range: [8, 8]
      - model: DewEfresh/neo_7b
        layer_range: [11, 11]
  - sources:
      # Eighth part: merge layer 9 with layer 11
      - model: DewEfresh/neo_7b
        layer_range: [9, 9]
      - model: DewEfresh/neo_7b
        layer_range: [11, 11]
  - sources:
      # Ninth part: merge layer 10 with layer 11
      - model: DewEfresh/neo_7b
        layer_range: [10, 10]
      - model: DewEfresh/neo_7b
        layer_range: [11, 11]
  - sources:
      # Tenth part: merge layer 12 with layer 15
      - model: DewEfresh/neo_7b
        layer_range: [12, 12]
      - model: DewEfresh/neo_7b
        layer_range: [15, 15]
  - sources:
      # Eleventh part: merge layer 13 with layer 15
      - model: DewEfresh/neo_7b
        layer_range: [13, 13]
      - model: DewEfresh/neo_7b
        layer_range: [15, 15]
  - sources:
      # Twelfth part: merge layer 14 with layer 15
      - model: DewEfresh/neo_7b
        layer_range: [14, 14]
      - model: DewEfresh/neo_7b
        layer_range: [15, 15]
  - sources:
      # Thirteenth part: merge layer 16 with layer 19
      - model: DewEfresh/neo_7b
        layer_range: [16, 16]
      - model: DewEfresh/neo_7b
        layer_range: [19, 19]
  - sources:
      # Fourteenth part: merge layer 17 with layer 19
      - model: DewEfresh/neo_7b
        layer_range: [17, 17]
      - model: DewEfresh/neo_7b
        layer_range: [19, 19]
  - sources:
      # Fifteenth part: merge layer 18 with layer 19
      - model: DewEfresh/neo_7b
        layer_range: [18, 18]
      - model: DewEfresh/neo_7b
        layer_range: [19, 19]
  - sources:
      # Sixteenth part: merge layer 20 with layer 23
      - model: DewEfresh/neo_7b
        layer_range: [20, 20]
      - model: DewEfresh/neo_7b
        layer_range: [23, 23]
  - sources:
      # Seventeenth part: merge layer 21 with layer 23
      - model: DewEfresh/neo_7b
        layer_range: [21, 21]
      - model: DewEfresh/neo_7b
        layer_range: [23, 23]
  - sources:
      # Eighteenth part: merge layer 22 with layer 23
      - model: DewEfresh/neo_7b
        layer_range: [22, 22]
      - model: DewEfresh/neo_7b
        layer_range: [23, 23]
  - sources:
      # Nineteenth part: merge layer 24 with layer 27
      - model: DewEfresh/neo_7b
        layer_range: [24, 24]
      - model: DewEfresh/neo_7b
        layer_range: [27, 27]
  - sources:
      # Twentieth part: merge layer 25 with layer 27
      - model: DewEfresh/neo_7b
        layer_range: [25, 25]
      - model: DewEfresh/neo_7b
        layer_range: [27, 27]
  - sources:
      # Twenty-first part: merge layer 26 with layer 27
      - model: DewEfresh/neo_7b
        layer_range: [26, 26]
      - model: DewEfresh/neo_7b
        layer_range: [27, 27]
# Specify the merging method for the slices
merge_method: slerp
base_model: DewEfresh/neo_7b
parameters:
  t: 0.3333  # Set global interpolation value to 33.33%
dtype: bfloat16

```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "DewEfresh/Neo_7b-merge14"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```