File size: 2,356 Bytes
df6d611 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: Brain_Tumor_Detector_swin
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9981308411214953
- name: F1
type: f1
value: 0.9985111662531018
- name: Recall
type: recall
value: 0.9990069513406157
- name: Precision
type: precision
value: 0.998015873015873
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Brain_Tumor_Detector_swin
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0054
- Accuracy: 0.9981
- F1: 0.9985
- Recall: 0.9990
- Precision: 0.9980
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.079 | 1.0 | 113 | 0.0283 | 0.9882 | 0.9906 | 0.9930 | 0.9881 |
| 0.0575 | 2.0 | 226 | 0.0121 | 0.9956 | 0.9965 | 0.9950 | 0.9980 |
| 0.0312 | 3.0 | 339 | 0.0054 | 0.9981 | 0.9985 | 0.9990 | 0.9980 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|