File size: 17,945 Bytes
f5d0c90 ec98a4a a96d044 ec98a4a f5d0c90 a96d044 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
---
base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit
datasets:
- microsoft/orca-agentinstruct-1M-v1
pipeline_tag: text-generation
library_name: transformers
license: llama3.2
tags:
- unsloth
- transformers
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e6d37e02dee9bcb9d9fa18/X4WG8AnMFqJuWkRvA0CrW.png)
### eval
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|----------------------------------------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|hellaswag | 1|none | 0|acc |↑ |0.5141|± |0.0050|
| | |none | 0|acc_norm |↑ |0.6793|± |0.0047|
|leaderboard_bbh | N/A| | | | | | | |
| - leaderboard_bbh_boolean_expressions | 1|none | 3|acc_norm |↑ |0.6040|± |0.0310|
| - leaderboard_bbh_causal_judgement | 1|none | 3|acc_norm |↑ |0.5668|± |0.0363|
| - leaderboard_bbh_date_understanding | 1|none | 3|acc_norm |↑ |0.4880|± |0.0317|
| - leaderboard_bbh_disambiguation_qa | 1|none | 3|acc_norm |↑ |0.3760|± |0.0307|
| - leaderboard_bbh_formal_fallacies | 1|none | 3|acc_norm |↑ |0.5400|± |0.0316|
| - leaderboard_bbh_geometric_shapes | 1|none | 3|acc_norm |↑ |0.2200|± |0.0263|
| - leaderboard_bbh_hyperbaton | 1|none | 3|acc_norm |↑ |0.5640|± |0.0314|
| - leaderboard_bbh_logical_deduction_five_objects | 1|none | 3|acc_norm |↑ |0.4560|± |0.0316|
| - leaderboard_bbh_logical_deduction_seven_objects | 1|none | 3|acc_norm |↑ |0.4360|± |0.0314|
| - leaderboard_bbh_logical_deduction_three_objects | 1|none | 3|acc_norm |↑ |0.4880|± |0.0317|
| - leaderboard_bbh_movie_recommendation | 1|none | 3|acc_norm |↑ |0.6360|± |0.0305|
| - leaderboard_bbh_navigate | 1|none | 3|acc_norm |↑ |0.6200|± |0.0308|
| - leaderboard_bbh_object_counting | 1|none | 3|acc_norm |↑ |0.4120|± |0.0312|
| - leaderboard_bbh_penguins_in_a_table | 1|none | 3|acc_norm |↑ |0.3219|± |0.0388|
| - leaderboard_bbh_reasoning_about_colored_objects | 1|none | 3|acc_norm |↑ |0.3440|± |0.0301|
| - leaderboard_bbh_ruin_names | 1|none | 3|acc_norm |↑ |0.3240|± |0.0297|
| - leaderboard_bbh_salient_translation_error_detection | 1|none | 3|acc_norm |↑ |0.3120|± |0.0294|
| - leaderboard_bbh_snarks | 1|none | 3|acc_norm |↑ |0.4494|± |0.0374|
| - leaderboard_bbh_sports_understanding | 1|none | 3|acc_norm |↑ |0.6040|± |0.0310|
| - leaderboard_bbh_temporal_sequences | 1|none | 3|acc_norm |↑ |0.1000|± |0.0190|
| - leaderboard_bbh_tracking_shuffled_objects_five_objects | 1|none | 3|acc_norm |↑ |0.1600|± |0.0232|
| - leaderboard_bbh_tracking_shuffled_objects_seven_objects| 1|none | 3|acc_norm |↑ |0.1200|± |0.0206|
| - leaderboard_bbh_tracking_shuffled_objects_three_objects| 1|none | 3|acc_norm |↑ |0.3440|± |0.0301|
| - leaderboard_bbh_web_of_lies | 1|none | 3|acc_norm |↑ |0.5160|± |0.0317|
|leaderboard_gpqa | N/A| | | | | | | |
| - leaderboard_gpqa_diamond | 1|none | 0|acc_norm |↑ |0.2727|± |0.0317|
| - leaderboard_gpqa_extended | 1|none | 0|acc_norm |↑ |0.2802|± |0.0192|
| - leaderboard_gpqa_main | 1|none | 0|acc_norm |↑ |0.2545|± |0.0206|
|leaderboard_ifeval | 3|none | 0|inst_level_loose_acc |↑ |0.5252|± | N/A|
| | |none | 0|inst_level_strict_acc |↑ |0.4748|± | N/A|
| | |none | 0|prompt_level_loose_acc |↑ |0.3919|± |0.0210|
| | |none | 0|prompt_level_strict_acc|↑ |0.3420|± |0.0204|
|leaderboard_math_hard | N/A| | | | | | | |
| - leaderboard_math_algebra_hard | 2|none | 4|exact_match |↑ |0.2150|± |0.0235|
| - leaderboard_math_counting_and_prob_hard | 2|none | 4|exact_match |↑ |0.0244|± |0.0140|
| - leaderboard_math_geometry_hard | 2|none | 4|exact_match |↑ |0.0606|± |0.0208|
| - leaderboard_math_intermediate_algebra_hard | 2|none | 4|exact_match |↑ |0.0143|± |0.0071|
| - leaderboard_math_num_theory_hard | 2|none | 4|exact_match |↑ |0.0649|± |0.0199|
| - leaderboard_math_prealgebra_hard | 2|none | 4|exact_match |↑ |0.1762|± |0.0275|
| - leaderboard_math_precalculus_hard | 2|none | 4|exact_match |↑ |0.0519|± |0.0192|
|leaderboard_mmlu_pro | 0.1|none | 5|acc |↑ |0.2822|± |0.0041|
|leaderboard_musr | N/A| | | | | | | |
| - leaderboard_musr_murder_mysteries | 1|none | 0|acc_norm |↑ |0.5400|± |0.0316|
| - leaderboard_musr_object_placements | 1|none | 0|acc_norm |↑ |0.2344|± |0.0265|
| - leaderboard_musr_team_allocation | 1|none | 0|acc_norm |↑ |0.3200|± |0.0296|
### Framework versions
- unsloth 2024.11.5
- trl 0.12.0
### Training HW
- V100
{
"results": {
"leaderboard_musr": {
" ": " ",
"alias": "leaderboard_musr"
},
"leaderboard_musr_murder_mysteries": {
"alias": " - leaderboard_musr_murder_mysteries",
"acc_norm,none": 0.54,
"acc_norm_stderr,none": 0.03158465389149902
},
"leaderboard_musr_object_placements": {
"alias": " - leaderboard_musr_object_placements",
"acc_norm,none": 0.234375,
"acc_norm_stderr,none": 0.02652733398834892
},
"leaderboard_musr_team_allocation": {
"alias": " - leaderboard_musr_team_allocation",
"acc_norm,none": 0.32,
"acc_norm_stderr,none": 0.029561724955241033
}
},
"group_subtasks": {
"leaderboard_musr": [
"leaderboard_musr_murder_mysteries",
"leaderboard_musr_object_placements",
"leaderboard_musr_team_allocation"
]
},
"configs": {
"leaderboard_musr_murder_mysteries": {
"task": "leaderboard_musr_murder_mysteries",
"dataset_path": "TAUR-Lab/MuSR",
"test_split": "murder_mysteries",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Convert a doc to text.\n \"\"\"\n choices = \"\"\n for i, choice in enumerate(ast.literal_eval(doc[\"choices\"])):\n choices += f\"{i+1} - {choice}\\n\"\n\n text = DOC_TO_TEXT.format(\n narrative=doc[\"narrative\"], question=doc[\"question\"], choices=choices\n )\n\n return text\n",
"doc_to_target": "{{answer_choice}}",
"doc_to_choice": "{{choices}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"leaderboard_musr_object_placements": {
"task": "leaderboard_musr_object_placements",
"dataset_path": "TAUR-Lab/MuSR",
"test_split": "object_placements",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Convert a doc to text.\n \"\"\"\n choices = \"\"\n for i, choice in enumerate(ast.literal_eval(doc[\"choices\"])):\n choices += f\"{i+1} - {choice}\\n\"\n\n text = DOC_TO_TEXT.format(\n narrative=doc[\"narrative\"], question=doc[\"question\"], choices=choices\n )\n\n return text\n",
"doc_to_target": "{{answer_choice}}",
"doc_to_choice": "{{choices}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"leaderboard_musr_team_allocation": {
"task": "leaderboard_musr_team_allocation",
"dataset_path": "TAUR-Lab/MuSR",
"test_split": "team_allocation",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Convert a doc to text.\n \"\"\"\n choices = \"\"\n for i, choice in enumerate(ast.literal_eval(doc[\"choices\"])):\n choices += f\"{i+1} - {choice}\\n\"\n\n text = DOC_TO_TEXT.format(\n narrative=doc[\"narrative\"], question=doc[\"question\"], choices=choices\n )\n\n return text\n",
"doc_to_target": "{{answer_choice}}",
"doc_to_choice": "{{choices}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
}
},
"versions": {
"leaderboard_musr_murder_mysteries": 1.0,
"leaderboard_musr_object_placements": 1.0,
"leaderboard_musr_team_allocation": 1.0
},
"n-shot": {
"leaderboard_musr_murder_mysteries": 0,
"leaderboard_musr_object_placements": 0,
"leaderboard_musr_team_allocation": 0
},
"higher_is_better": {
"leaderboard_musr": {
"acc_norm": true
},
"leaderboard_musr_murder_mysteries": {
"acc_norm": true
},
"leaderboard_musr_object_placements": {
"acc_norm": true
},
"leaderboard_musr_team_allocation": {
"acc_norm": true
}
},
"n-samples": {
"leaderboard_musr_murder_mysteries": {
"original": 250,
"effective": 250
},
"leaderboard_musr_object_placements": {
"original": 256,
"effective": 256
},
"leaderboard_musr_team_allocation": {
"original": 250,
"effective": 250
}
},
"config": {
"model": "hf",
"model_args": "pretrained=DevQuasar/analytical_reasoning_r16a32_unsloth-Llama-3.2-3B-Instruct-bnb-4bit",
"batch_size": "auto:4",
"batch_sizes": [
16,
16,
16,
32
],
"device": null,
"use_cache": "eval_cache",
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "0230356",
"date": 1732986471.4917576,
"pretty_env_info": "PyTorch version: 2.5.1+cu124\nIs debug build: False\nCUDA used to build PyTorch: 12.4\nROCM used to build PyTorch: N/A\n\nOS: Debian GNU/Linux 12 (bookworm) (x86_64)\nGCC version: (Debian 12.2.0-14) 12.2.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.36\n\nPython version: 3.11.10 (main, Oct 3 2024, 07:29:13) [GCC 11.2.0] (64-bit runtime)\nPython platform: Linux-6.1.0-26-amd64-x86_64-with-glibc2.36\nIs CUDA available: True\nCUDA runtime version: Could not collect\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA GeForce GTX 1050 Ti\nGPU 1: Tesla P40\nGPU 2: Tesla V100-PCIE-32GB\nGPU 3: Tesla V100-PCIE-32GB\n\nNvidia driver version: 535.183.01\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 43 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nVendor ID: AuthenticAMD\nModel name: AMD Ryzen Threadripper 1950X 16-Core Processor\nCPU family: 23\nModel: 1\nThread(s) per core: 2\nCore(s) per socket: 16\nSocket(s): 1\nStepping: 1\nFrequency boost: enabled\nCPU(s) scaling MHz: 66%\nCPU max MHz: 3400.0000\nCPU min MHz: 2200.0000\nBogoMIPS: 6786.43\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sev\nVirtualization: AMD-V\nL1d cache: 512 KiB (16 instances)\nL1i cache: 1 MiB (16 instances)\nL2 cache: 8 MiB (16 instances)\nL3 cache: 32 MiB (4 instances)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-31\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Reg file data sampling: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT vulnerable\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==2.1.3\n[pip3] torch==2.5.1\n[pip3] triton==3.1.0\n[conda] numpy 2.1.3 pypi_0 pypi\n[conda] torch 2.5.1 pypi_0 pypi\n[conda] triton 3.1.0 pypi_0 pypi",
"transformers_version": "4.46.3",
"upper_git_hash": null,
"tokenizer_pad_token": [
"<|finetune_right_pad_id|>",
"128004"
],
"tokenizer_eos_token": [
"<|eot_id|>",
"128009"
],
"tokenizer_bos_token": [
"<|begin_of_text|>",
"128000"
],
"eot_token_id": 128009,
"max_length": 131072,
"task_hashes": {
"leaderboard_musr_murder_mysteries": "a696259562ea5c5c09a2613e30526fae1de29f55da9e28e8d7e8a53027e6d330",
"leaderboard_musr_object_placements": "3aa8c5e5bc59cd6ba2326269b9f0bf3cee8cba1b4e9e1d1330cf5f1f59ea0dce",
"leaderboard_musr_team_allocation": "5a75f135c145ee861a1cf31b63346709ef41b9d542be6a61c5818c210a3797a5"
},
"model_source": "hf",
"model_name": "DevQuasar/analytical_reasoning_r16a32_unsloth-Llama-3.2-3B-Instruct-bnb-4bit",
"model_name_sanitized": "DevQuasar__analytical_reasoning_r16a32_unsloth-Llama-3.2-3B-Instruct-bnb-4bit",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 52195.45405349,
"end_time": 52407.302247922,
"total_evaluation_time_seconds": "211.84819443200104"
} |