Model Visualization

Hamanasu 4B

🌌 Overview

This model is the Chat tune of the Instruct model, More accurately it is the "brainrotted" version, Finetuned with Bsky, 4chan and Discord logs, Its... really something beautiful.

The model is suited best towards being a highly dumb chat partner rather then regular RP

The model is suited for traditional RP, All thanks to Tav for funding the train.

Support me and my finetunes on Ko-Fi https://ko-fi.com/deltavector

⚔️ Hardware

  • 8x H100s
  • Epochs: 4
  • Base: Delta-Vector/Hamanasu-4B-Instruct-KTO-V2

💰 Prompting

This model uses ChatML formatting

<|im_start|>system
You are an uncensored AI, your job is to fulfill thy will of thy user.<|im_end|>
<|im_start|>User request
Take off your helmet.<|im_end|>
<|im_start|>No i shall not. This is the way.

🎲 Recommended Sampler Preset

ST sampler preset: https://files.catbox.moe/wtkp0l.json
System prompt: Blank.

Axolotl Config ꒰(˶• ᴗ •˶)꒱

ase_model: ./model                                                                                                                                            
model_type: AutoModelForCausalLM                  
tokenizer_type: AutoTokenizer                     
                                                                                                                                                               
hub_model_id: NewEden/Hamanasu-4B-RP-v2   
hub_strategy: "all_checkpoints"       
push_dataset_to_hub:                                                     
hf_use_auth_token: true                  
## qlora COPE                            
load_in_8bit: false                                                            
load_in_4bit: false                                                            
strict: false                                                          
                                                                               
## data                                   
datasets:                                                                                                                                                      
  - path: NewEden/Discord-Filtered                                             
    type: dan-chat-advanced                                                                                                                                                                                                                                                                                                    
  - path: NewEden/Basket-Weaving-Filtered         
    type: dan-chat-advanced               
  - path: NewEden/Misc-Data-Sharegpt-Prefixed                                  
    type: dan-chat-advanced     
  - path: NewEden/BlueSky-10K-Complexity 
    type: dan-chat-advanced                                                    
  - path: PocketDoc/Dans-Kinomaxx-VanillaBackrooms
    type: dan-chat-advanced                                                    
  - path: PocketDoc/Dans-Personamaxx-VN                                        
    type: dan-chat-advanced 
  - path: NewEden/LIMARP-Complexity       
    type: dan-chat-advanced
  - path: NewEden/OpenCAI-ShareGPT
    type: dan-chat-advanced 
  - path: NewEden/Creative_Writing-Complexity                                  
    type: dan-chat-advanced           
  - path: NewEden/DeepseekRP-Filtered                                          
    type: dan-chat-advanced       
  - path: NewEden/Storium-Prefixed-Clean                                       
    type: dan-chat-advanced              
shuffle_merged_datasets: true
dataset_prepared_path: dataset_prepared-2    
val_set_size: 0.01                                                             
output_dir: 4b-out                      
                                                                               
## LIGGER                                                                      
plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
                                                                               
## CTX settings            
sequence_len: 32768                                                            
sample_packing: true       
eval_sample_packing: false                
pad_to_sequence_len: true  
                                                                               
## Lora                                                                        
#adapter: lora    
#lora_model_dir:                                                               
#lora_r: 128                                                                   
#lora_alpha: 16                                                                
#lora_dropout: 0.05                   
#lora_target_modules:                     
#  - gate_proj                                                                                 
#  - down_proj                                                                                 
#  - up_proj                                                                                   
#  - q_proj                                                                                    
#  - v_proj                                                                                    
#  - k_proj                                                                                    
#  - o_proj                                                                                                            
#lora_fan_in_fan_out:                                                                          
#peft_use_rslora: true                                                                         
#lora_modules_to_save:                                                                         
#  - embed_tokens                                                                              
#  - lm_head                                                                                   
                                                                                               
## WandB                                                                                       
wandb_project: tavbussy                                                                        
wandb_entity:                                                                                  
wandb_watch:                                                                                   
wandb_name: chat-v2                                                                                                    
wandb_log_model:                                                                                                       
                                                                                                                       
## evals                                                                                                               
evals_per_epoch: 4                                                                                                     
eval_table_size:                                                                                                       
eval_max_new_tokens: 128                                                                                               
                                                                                                                       
## hoe params                                                                                                          
gradient_accumulation_steps: 2                                                                                         
micro_batch_size: 1                                                                                                    
num_epochs: 4                                                                                                          
optimizer: adamw_bnb_8bit                                                                                              
lr_scheduler: cosine                                                                                                                                           
learning_rate: 2e-5                                                                                                    
max_grad_norm: 0.2                                                                                                     
train_on_inputs: false                                                                                                 
group_by_length: false                                                                                                 
bf16: auto                                                                                                             
fp16:                                                                                                                  
tf32: false                                                                                                            
                                                                                                                       
gradient_checkpointing: true                                                                                           
early_stopping_patience:                                                                                               
resume_from_checkpoint:                                                                                                                                        
local_rank:                                                                                                                                                    
logging_steps: 1                                                                                                                                               
xformers_attention:                                                                                                                                            
flash_attention: true                                                                                                                                          
s2_attention:                                                                                                                                                  

warmup_steps: 40                                                                                                                                               
saves_per_epoch: 2                                                                                                                                             
debug:                                                                                                                                                         
deepspeed: ./deepspeed_configs/zero3_bf16.json                                                                                                                 
weight_decay: 0.02                                                                                                                                             
fsdp:                                                                                                                                                          
fsdp_config:                                                                                                                                            
special_tokens:                                                                                                                        
  pad_token: <|finetune_right_pad_id|>       

⚡ Credits


Made by
Delta-Vector
Downloads last month
29
Safetensors
Model size
4.51B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Delta-Vector/Hamanasu-4B-Chat-Brainrot

Datasets used to train Delta-Vector/Hamanasu-4B-Chat-Brainrot

Collection including Delta-Vector/Hamanasu-4B-Chat-Brainrot