File size: 6,681 Bytes
db734d1 1f35170 db734d1 1f35170 db734d1 1f35170 db734d1 1f35170 db734d1 1f35170 db734d1 1f35170 db734d1 1f35170 db734d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
library_name: transformers
tags: []
---
# SUMMARY
Just a model using to learn Fine Tuning of 'DialoGPT-medium'
- on a self made datasets
- on a self made special tokens
- on a multiple fine tuned with ~30K dataset (in progress mode)
If interested in how I got to this point and how I created the datasets you can visit:
[Crafting GPT2 for Personalized AI-Preparing Data the Long Way](https://medium.com/@deeokay/the-soul-in-the-machine-crafting-gpt2-for-personalized-ai-9d38be3f635f)
<!-- Provide a quick summary of what the model is/does. -->
## DECLARING NEW SPECIAL TOKENS
```python
special_tokens_dict = {
'eos_token': '<|STOP|>',
'bos_token': '<|STOP|>',
'pad_token': '<|PAD|>',
'additional_special_tokens': ['<|BEGIN_QUERY|>', '<|BEGIN_QUERY|>',
'<|BEGIN_ANALYSIS|>', '<|END_ANALYSIS|>',
'<|BEGIN_RESPONSE|>', '<|END_RESPONSE|>',
'<|BEGIN_SENTIMENT|>', '<|END_SENTIMENT|>',
'<|BEGIN_CLASSIFICATION|>', '<|END_CLASSIFICATION|>',]
}
tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids('<|STOP|>')
tokenizer.bos_token_id = tokenizer.convert_tokens_to_ids('<|STOP|>')
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids('<|PAD|>')
```
The order of tokens is as follows:
```python
def combine_text(user_prompt, analysis, sentiment, new_response, classification):
user_q = f"<|STOP|><|BEGIN_QUERY|>{user_prompt}<|END_QUERY|>"
analysis = f"<|BEGIN_ANALYSIS|>{analysis}<|END_ANALYSIS|>"
new_response = f"<|BEGIN_RESPONSE|>{new_response}<|END_RESPONSE|>"
sentiment = f"<|BEGIN_SENTIMENT|>Sentiment: {sentiment}<|END_SENTIMENT|><|STOP|>"
classification = f"<|BEGIN_CLASSIFICATION|>{classification}<|END_CLASSIFICATION|>"
return user_q + analysis + new_response + classification + sentiment
```
## INFERANCING
I am currently testing two ways, if anyone knows a better one, please let me know!
```python
import torch
from transformers import AutoModelForCausalLLM, AutoTokenizer
models_folder = "Deeokay/DialoGPT-special-tokens-medium4"
model = AutoModelForCausalLM.from_pretrained(models_folder)
tokenizer = AutoTokenizer.from_pretrained(models_folder)
# Device configuration <<change as needed>>
device = torch.device("cpu")
model.to(device)
```
### OPTION 1 INFERFENCE
```python
import time
class Stopwatch:
def __init__(self):
self.start_time = None
self.end_time = None
def start(self):
self.start_time = time.time()
def stop(self):
self.end_time = time.time()
def elapsed_time(self):
if self.start_time is None:
return "Stopwatch hasn't been started"
if self.end_time is None:
return "Stopwatch hasn't been stopped"
return self.end_time - self.start_time
stopwatch1 = Stopwatch()
def generate_response(input_text, max_length=250):
stopwatch1.start()
# Prepare the input
# input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>{input_text}<|END_ANALYSIS|><|BEGIN_RESPONSE|>"
input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>"
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
# Create attention mask
attention_mask = torch.ones_like(input_ids).to(device)
# Generate
output = model.generate(
input_ids,
max_new_tokens=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
attention_mask=attention_mask,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.convert_tokens_to_ids('<|STOP|>'),
)
stopwatch1.stop()
return tokenizer.decode(output[0], skip_special_tokens=False)
```
### OPTION 2 INFERNCE
```python
import time
class Stopwatch:
def __init__(self):
self.start_time = None
self.end_time = None
def start(self):
self.start_time = time.time()
def stop(self):
self.end_time = time.time()
def elapsed_time(self):
if self.start_time is None:
return "Stopwatch hasn't been started"
if self.end_time is None:
return "Stopwatch hasn't been stopped"
return self.end_time - self.start_time
stopwatch2 = Stopwatch()
def generate_response2(input_text, max_length=250):
stopwatch2.start()
# Prepare the input
# input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>{input_text}<|END_ANALYSIS|><|BEGIN_RESPONSE|>"
input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>"
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
# Create attention mask
attention_mask = torch.ones_like(input_ids).to(device)
# # 2ND OPTION FOR : Generate
output = model.generate(
input_ids,
max_new_tokens=max_length,
attention_mask=attention_mask,
do_sample=True,
temperature=0.4,
top_k=60,
no_repeat_ngram_size=2,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
stopwatch2.stop()
return tokenizer.decode(output[0], skip_special_tokens=False)
```
### DECODING ANSWER
When I need just the response
```python
def decode(text):
full_text = text
# Extract the response part
start_token = "<|BEGIN_RESPONSE|>"
end_token = "<|END_RESPONSE|>"
start_idx = full_text.find(start_token)
end_idx = full_text.find(end_token)
if start_idx != -1 and end_idx != -1:
response = full_text[start_idx + len(start_token):end_idx].strip()
else:
response = full_text.strip()
return response
```
### MY SETUP
I use the stopwatch to time the responses and I use both inference to see the difference
```python
input_text = "Who is Steve Jobs and what was contribution?"
response1_full = generate_response(input_text)
#response1 = decode(response1_full)
print(f"Input: {input_text}")
print("=======================================")
print(f"Response1: {response1_full}")
elapsed1 = stopwatch1.elapsed_time()
print(f"Process took {elapsed1:.4f} seconds")
print("=======================================")
response2_full = generate_response2(input_text)
#response2 = decode(response2_full)
print(f"Response2: {response2_full}")
elapsed2 = stopwatch2.elapsed_time()
print(f"Process took {elapsed2:.4f} seconds")
print("=======================================")
```
### Out-of-Scope Use
Well everything that has a factual data.. trust at your own risk!
Never tested on mathamatical knowledge.
I quite enjoy how the response feels closer to what I had in mind..
|