Deci
/

Text Generation
Transformers
Safetensors
English
deci
Deci AI
DeciLM
custom_code
Eval Results
File size: 6,445 Bytes
b56a22e
72c862f
 
 
 
 
953a4bb
72c862f
 
953a4bb
b56a22e
72c862f
f4091e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
cmd example
You need a file called "sample.txt" (default path) with text to take tokens for prompts or supply --text_file "path/to/text.txt" as an argument to a text file.
You can use our attached "sample.txt" file with one of Deci's blogs as a prompt.

# Run this and record tokens per second (652 tokens per second on A10 for DeciLM-6b)
python hf_benchmark_example.py --model Deci/DeciLM-6b

# Run this and record tokens per second (136 tokens per second on A10 for meta-llama/Llama-2-7b-hf), CUDA OOM above batch size 8
python hf_benchmark_example.py --model meta-llama/Llama-2-7b-hf --batch_size 8
"""

import json

import datasets
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
from argparse import ArgumentParser


def parse_args():
    parser = ArgumentParser()

    parser.add_argument(
        "--model",
        required=True,
        help="Model to evaluate, provide a repo name in Hugging Face hub or a local path",
    )
    parser.add_argument(
        "--temperature",
        default=0.2,
        type=float
    )
    parser.add_argument(
        "--top_p",
        default=0.95,
        type=float
    )
    parser.add_argument(
        "--top_k",
        default=0,
        type=float
    )

    parser.add_argument(
        "--revision",
        default=None,
        help="Model revision to use",
    )
    parser.add_argument(
        "--iterations",
        type=int,
        default=6,
        help="Model revision to use",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=64,
        help="Batch size for evaluation on each worker, can be larger for HumanEval",
    
    )
    parser.add_argument(
        "--prompt_length",
        type=int,
        default=512,
    )
    parser.add_argument(
        "--max_new_tokens",
        type=int,
        default=512,
        help="Maximum length of generated sequence (prompt+generation)",
    )
    parser.add_argument(
        "--precision",
        type=str,
        default="bf16",
        help="Model precision, from: fp32, fp16 or bf16",
    )
    parser.add_argument(
        "--text_file",
	type=str,
        default="sample.txt",
        help="text file that will be used to generate tokens for prompts",
    )
    parser.add_argument(
        "--load_in_8bit",
        action="store_true",
        help="Load model in 8bit",
    )
    parser.add_argument(
        "--load_in_4bit",
        action="store_true",
        help="Load model in 4bit",
    )
    return parser.parse_args()


def main():
    args = parse_args()
    transformers.logging.set_verbosity_error()
    datasets.logging.set_verbosity_error()


    results = {}
    dict_precisions = {
        "fp32": torch.float32,
        "fp16": torch.float16,
        "bf16": torch.bfloat16,
    }
    if args.precision not in dict_precisions:
        raise ValueError(
            f"Non valid precision {args.precision}, choose from: fp16, fp32, bf16"
        )
    if args.load_in_8bit:
        print("Loading model in 8bit")
        # the model needs to fit in one GPU
        model = AutoModelForCausalLM.from_pretrained(
            args.model,
            revision=args.revision,
            load_in_8bit=args.load_in_8bit,
            trust_remote_code=args.trust_remote_code,
            use_auth_token=args.use_auth_token,
            device_map={"": 'cuda'},
        )
    elif args.load_in_4bit:
        print("Loading model in 4bit")
        # the model needs to fit in one GPU
        model = AutoModelForCausalLM.from_pretrained(
            args.model,
            revision=args.revision,
            load_in_4bit=args.load_in_4bit,
            trust_remote_code=args.trust_remote_code,
            use_auth_token=args.use_auth_token,
            device_map={"": 'cuda'},
        )
    else:
        print(f"Loading model in {args.precision}")
        model = AutoModelForCausalLM.from_pretrained(
            args.model,
            torch_dtype=torch.bfloat16,
            trust_remote_code=True,
            use_auth_token=True
        )

    tokenizer = AutoTokenizer.from_pretrained(
        args.model,
        revision=args.revision,
        trust_remote_code=True,
        use_auth_token=True,
    )

    starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
    model.cuda()
    model.eval()
    
    with open(args.text_file, "r") as f:
        prompt = f.read()

    prompt = torch.tensor(tokenizer.encode(prompt))[:args.prompt_length].cuda()    
    
    results = {'prefill': [], 'gen': [], 'max_new_tokens': args.max_new_tokens, 'prompt_length': args.prompt_length, 'model': args.model, 'batch_size': args.batch_size}
    inputs = prompt.repeat(args.batch_size, 1)

    #warmup
    print('start warmup')
    for _ in range(10):
        with torch.no_grad():
            _ = model.generate(
                                input_ids=inputs,
                                max_new_tokens=1,
                        do_sample=False,
                    )
    print('finish warmup')
    torch.cuda.synchronize()
            
    for prefill_iter in range(args.iterations):
        starter.record()
        with torch.no_grad():
            _ = model.generate(
                                input_ids=inputs,
                                max_new_tokens=1,
                        do_sample=False,
                    )
        ender.record()
        torch.cuda.synchronize()
        t = starter.elapsed_time(ender) / 1000
        results['prefill'].append(t)
        print(f'{args.batch_size} prefill iter {prefill_iter} took: {t}')

    
    for gen_iter in range(args.iterations):
        starter.record()
        with torch.no_grad():
            _ = model.generate(
                                input_ids=inputs,
                                max_new_tokens=args.max_new_tokens,
                        do_sample=False,
                    )
        ender.record()
        torch.cuda.synchronize()
        t = starter.elapsed_time(ender) / 1000
        results['gen'].append(t)

        print(f'{args.batch_size} total generation iter {gen_iter} took: {t}')
        print(f'{args.batch_size * args.max_new_tokens / t} tokens per seconds')
    model_str = args.model.split('/')[-1]
    with open(f'timing_{model_str}_{args.batch_size}.json', 'w') as f:
       json.dump(results, f)
    

if __name__ == "__main__":
    main()