Deci
/

Text Generation
Transformers
Safetensors
deci
custom_code
File size: 4,023 Bytes
e87c364
41064f3
e87c364
 
f7203be
41064f3
 
 
 
 
 
 
e87c364
7dcc809
41064f3
 
e87c364
 
6956c9f
 
 
e87c364
 
41064f3
 
2eed456
 
f7203be
41064f3
 
e87c364
41064f3
 
 
 
 
 
 
 
 
 
7dcc809
41064f3
 
 
 
 
 
 
 
 
 
 
e87c364
 
41064f3
 
 
 
 
 
 
fd8f276
41064f3
e87c364
41064f3
 
 
 
 
e87c364
41064f3
fd8f276
e87c364
 
41064f3
 
 
 
e87c364
 
fd8f276
41064f3
e87c364
41064f3
 
 
 
 
 
 
e87c364
41064f3
a98307b
e87c364
41064f3
e87c364
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Model Card for DeciCoder-6B

DeciCoder-6B is a 6 billion parameter decoder-only code completion model
trained on the Python, Java, Javascript, Rust, C++, C, and C# subset of [Starcoder Training Dataset](https://huggingface.co/datasets/bigcode/starcoderdata).
The model uses variable Grouped Query Attention and has a context window of 2k
tokens. It was trained using a Fill-in-the-Middle training objective. The model's
architecture was generated by Deci's proprietary Neural Architecture
Search-based technology, AutoNAC.

## Model Details

- **Developed by:** Deci 
- **Model type:** DeciCoder-6B is an auto-regressive language model based on the transformer decoder architecture, using variable Grouped Query Attention.
- **Language(s):** Python, Java, JavaScript, Rust, C++, C, C#, Go
- **License:** Model checkpoints are licensed under the [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

## Documentation

- Blog Post: [Introducing DeciCoder-6B: Code LLM Engineered for Accuracy & Cost Efficiency At Scale](https://deci.ai/blog/decicoder-6b-the-best-multi-language-code-generation-llm-in-its-class/)
- Tutorial: [How to Run DeciCoder-6B on Qualcomm Cloud AI 100](https://github.com/quic/cloud-ai-sdk/tree/1.12/models/language_processing/decoder)
- Google Colab [Notebook](https://colab.research.google.com/drive/1QRbuser0rfUiFmQbesQJLXVtBYZOlKpB?usp=sharing) 
- Questions: Feel free to contact us via our [Discord Community!](https://discord.com/invite/p9ecgRhDR8/)

## Model Architecture

| Parameters | Layers | Heads  | Sequence Length  | GQA num_key_value_heads  | 
|:----------|:----------|:----------|:----------|:----------|
| 6B    | 32    | 32    | 2k  | Variable  | 


- **Decoder layer:** Variable Grouped Query Attention
- **Position Embeddings:** Rotary Position Embeddings [Su et al., 2021](https://arxiv.org/abs/2104.09864)


### How to Use

```bibtex
# pip install -q transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "Deci/DeciCoder-6B"
device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device)

inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))

### Attribution

DeciCoder-6B was trained on StarCoder Training Dataset, filtered for
Python, Java, JavaScript, Ruby, RUST, C++, C, and C#. For additional information, please
refer to [https://huggingface.co/datasets/bigcode/starcoderdata](https://huggingface.co/datasets/bigcode/starcoderdata).

```

### Limitations

The model has undergone training with source code from Python, Java,
JavaScript, RUST, C++, C, and C#, and Go. While the primary language in the source is English, it does
contain other languages. Therefore, the model can produce code snippets
given some context. However, there is no assurance that the resulting
code will function as expected. It might be suboptimal, contain bugs, or
even exploits.

## Evaluation

Below are DeciCoder-6B's pass@1 on MultiPL HumanEval scores

| Python | JavaScript | Java  | C++  | C#  | Rust  | Go  | 
|:----------|:----------|:----------|:----------|:----------|:----------|:----------|
| 33.3%    | 29.3%    | 30.3%    |29.93%    |20.31%    |20.5%    |77.47%    |


### Runtime Benchmarks

|Inference Tool | Hardware | Prompt Length | Generation Length | Throughput (tokens/sec) |
|:----------|:----------|:----------|:----------|:----------|
| Qualcomm Cloud AI 100 SDK | Qualcomm Cloud AI 100 | 1024 | 1024 | 531.3 | 

- Measured for maximal batch size on the device

## How to Cite

Please cite this model using this format.

```bibtex
@misc{DeciFoundationModels,
title = {DeciCoder-6B},
author = {DeciAI Research Team},
year = {2024}
url={[https://huggingface.co/deci/decicoder-6B](https://huggingface.co/deci/decicoder-6B)},
}
```