Files changed (1) hide show
  1. README.md +47 -3
README.md CHANGED
@@ -1,3 +1,47 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ from flask import Flask, render_template, request, jsonify
5
+
6
+
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer
8
+ import torch
9
+
10
+
11
+ tokenizer = AutoTokenizer.from_pretrained("Davlan/xlm-roberta-base-finetuned-shona")
12
+ model = AutoModelForCausalLM.from_pretrained("Davlan/xlm-roberta-base-finetuned-shona")
13
+
14
+
15
+ app = Flask(__name__)
16
+
17
+ @app.route("/")
18
+ def index():
19
+ return render_template('chat.html')
20
+
21
+
22
+ @app.route("/get", methods=["GET", "POST"])
23
+ def chat():
24
+ msg = request.form["msg"]
25
+ input = msg
26
+ return get_Chat_response(input)
27
+
28
+
29
+ def get_Chat_response(text):
30
+
31
+ # Let's chat for 5 lines
32
+ for step in range(5):
33
+ # encode the new user input, add the eos_token and return a tensor in Pytorch
34
+ new_user_input_ids = tokenizer.encode(str(text) + tokenizer.eos_token, return_tensors='pt')
35
+
36
+ # append the new user input tokens to the chat history
37
+ bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
38
+
39
+ # generated a response while limiting the total chat history to 1000 tokens,
40
+ chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
41
+
42
+ # pretty print last ouput tokens from bot
43
+ return tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
44
+
45
+
46
+ if __name__ == '__main__':
47
+ app.run()