Davlan's picture
updating readme
fb3477d

Hugging Face's logo

language: ha datasets:


bert-base-multilingual-cased-finetuned-hausa

Model description

bert-base-multilingual-cased-finetuned-hausa is a Hausa BERT model obtained by fine-tuning bert-base-multilingual-cased model on Hausa language texts. It provides better performance than the multilingual BERT on text classification and named entity recognition datasets.

Specifically, this model is a bert-base-multilingual-cased model that was fine-tuned on Hausa corpus.

Intended uses & limitations

How to use

You can use this model with Transformers pipeline for masked token prediction.

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-hausa')
>>> unmasker("Shugaban [MASK] Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci")
                    
[{'sequence': 
'[CLS] Shugaban Nigeria Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 
'score': 0.9762618541717529, 
'token': 22045, 
'token_str': 'Nigeria'}, 
{'sequence': '[CLS] Shugaban Ka Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.007239189930260181, 
'token': 25444, 
'token_str': 'Ka'}, 
{'sequence': '[CLS] Shugaban, Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001990817254409194, 
'token': 117, 
'token_str': ','}, 
{'sequence': '[CLS] Shugaban Ghana Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001566368737258017, 
'token': 28682, 
'token_str': 'Ghana'}, 
{'sequence': '[CLS] Shugabanmu Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.0009375187801197171, 
'token': 11717, 
'token_str': '##mu'}]

Limitations and bias

This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.

Training data

This model was fine-tuned on Hausa CC-100

Training procedure

This model was trained on a single NVIDIA V100 GPU

Eval results on Test set (F-score, average over 5 runs)

Dataset mBERT F1 ha_bert F1
MasakhaNER 86.65 91.31
VOA Hausa Textclass 84.76 90.98

BibTeX entry and citation info

By David Adelani