SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v4")
# Run inference
sentences = [
'هایومکس',
'ژل هایومکس ولومایزر 2 سی سی',
'دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8396 |
cosine_accuracy_threshold | 0.7624 |
cosine_f1 | 0.8952 |
cosine_f1_threshold | 0.7235 |
cosine_precision | 0.8454 |
cosine_recall | 0.9511 |
cosine_ap | 0.9296 |
dot_accuracy | 0.8128 |
dot_accuracy_threshold | 18.1649 |
dot_f1 | 0.8798 |
dot_f1_threshold | 17.5963 |
dot_precision | 0.8227 |
dot_recall | 0.9454 |
dot_ap | 0.9138 |
manhattan_accuracy | 0.8363 |
manhattan_accuracy_threshold | 56.6106 |
manhattan_f1 | 0.8929 |
manhattan_f1_threshold | 60.147 |
manhattan_precision | 0.8404 |
manhattan_recall | 0.9525 |
manhattan_ap | 0.9275 |
euclidean_accuracy | 0.8367 |
euclidean_accuracy_threshold | 3.6917 |
euclidean_f1 | 0.8933 |
euclidean_f1_threshold | 3.6917 |
euclidean_precision | 0.8525 |
euclidean_recall | 0.9383 |
euclidean_ap | 0.9275 |
max_accuracy | 0.8396 |
max_accuracy_threshold | 56.6106 |
max_f1 | 0.8952 |
max_f1_threshold | 60.147 |
max_precision | 0.8525 |
max_recall | 0.9525 |
max_ap | 0.9296 |
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8314 |
cosine_accuracy_threshold | 0.7449 |
cosine_f1 | 0.8898 |
cosine_f1_threshold | 0.7428 |
cosine_precision | 0.8502 |
cosine_recall | 0.9332 |
cosine_ap | 0.9253 |
dot_accuracy | 0.8083 |
dot_accuracy_threshold | 18.1676 |
dot_f1 | 0.8762 |
dot_f1_threshold | 17.1061 |
dot_precision | 0.8156 |
dot_recall | 0.9464 |
dot_ap | 0.9079 |
manhattan_accuracy | 0.8277 |
manhattan_accuracy_threshold | 53.9454 |
manhattan_f1 | 0.8875 |
manhattan_f1_threshold | 59.6646 |
manhattan_precision | 0.8337 |
manhattan_recall | 0.9487 |
manhattan_ap | 0.9231 |
euclidean_accuracy | 0.8274 |
euclidean_accuracy_threshold | 3.4869 |
euclidean_f1 | 0.8875 |
euclidean_f1_threshold | 3.7965 |
euclidean_precision | 0.8363 |
euclidean_recall | 0.9452 |
euclidean_ap | 0.9232 |
max_accuracy | 0.8314 |
max_accuracy_threshold | 53.9454 |
max_f1 | 0.8898 |
max_f1_threshold | 59.6646 |
max_precision | 0.8502 |
max_recall | 0.9487 |
max_ap | 0.9253 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | max_ap |
---|---|---|---|---|
None | 0 | - | - | 0.8131 |
0.1558 | 500 | 0.0262 | - | - |
0.3116 | 1000 | 0.0184 | - | - |
0.4674 | 1500 | 0.0173 | - | - |
0.6232 | 2000 | 0.0164 | 0.0155 | 0.9253 |
0.7791 | 2500 | 0.016 | - | - |
0.9349 | 3000 | 0.0155 | - | - |
1.0 | 3209 | - | - | 0.9296 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v4
Evaluation results
- Cosine Accuracy on Unknownself-reported0.840
- Cosine Accuracy Threshold on Unknownself-reported0.762
- Cosine F1 on Unknownself-reported0.895
- Cosine F1 Threshold on Unknownself-reported0.723
- Cosine Precision on Unknownself-reported0.845
- Cosine Recall on Unknownself-reported0.951
- Cosine Ap on Unknownself-reported0.930
- Dot Accuracy on Unknownself-reported0.813
- Dot Accuracy Threshold on Unknownself-reported18.165
- Dot F1 on Unknownself-reported0.880