Generation: Emotions
Collection
Models to generate annotations with a focus on emotions
•
2 items
•
Updated
This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
No log | 1.0 | 24 | 0.5128 | 0.5154 | 0.0562 | 0.5072 | 0.5086 |
No log | 2.0 | 48 | 0.3782 | 0.7132 | 0.0145 | 0.7127 | 0.7159 |
No log | 3.0 | 72 | 0.3387 | 0.7872 | 0.1712 | 0.7745 | 0.7756 |
No log | 4.0 | 96 | 0.3221 | 0.7804 | 0.1598 | 0.7754 | 0.7777 |
No log | 5.0 | 120 | 0.3669 | 0.7453 | 0.1330 | 0.7403 | 0.7414 |
No log | 6.0 | 144 | 0.3559 | 0.8119 | 0.2070 | 0.8102 | 0.8115 |
No log | 7.0 | 168 | 0.3559 | 0.8047 | 0.1895 | 0.8036 | 0.8047 |
No log | 8.0 | 192 | 0.3808 | 0.7967 | 0.1925 | 0.7934 | 0.7949 |
No log | 9.0 | 216 | 0.3899 | 0.8047 | 0.2127 | 0.8030 | 0.8040 |
No log | 10.0 | 240 | 0.3991 | 0.8096 | 0.2247 | 0.8068 | 0.8074 |
Should you use our models in your work, please consider citing us as:
@article{BERTOLINI2024406,
title = {DReAMy: a library for the automatic analysis and annotation of dream reports with multilingual large language models},
journal = {Sleep Medicine},
volume = {115},
pages = {406-407},
year = {2024},
note = {Abstracts from the 17th World Sleep Congress},
issn = {1389-9457},
doi = {https://doi.org/10.1016/j.sleep.2023.11.1092},
url = {https://www.sciencedirect.com/science/article/pii/S1389945723015186},
author = {L. Bertolini and A. Michalak and J. Weeds}
}