Tagged_Uni_50v2_NER_Model_3Epochs_AUGMENTED
This model is a fine-tuned version of bert-base-cased on the tagged_uni50v2_wikigold_split dataset. It achieves the following results on the evaluation set:
- Loss: 0.6159
- Precision: 0.08
- Recall: 0.0005
- F1: 0.0010
- Accuracy: 0.7850
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 16 | 0.7399 | 0.0 | 0.0 | 0.0 | 0.7779 |
No log | 2.0 | 32 | 0.6545 | 0.0833 | 0.0002 | 0.0005 | 0.7817 |
No log | 3.0 | 48 | 0.6159 | 0.08 | 0.0005 | 0.0010 | 0.7850 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.11.6
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Evaluation results
- Precision on tagged_uni50v2_wikigold_splitself-reported0.080
- Recall on tagged_uni50v2_wikigold_splitself-reported0.000
- F1 on tagged_uni50v2_wikigold_splitself-reported0.001
- Accuracy on tagged_uni50v2_wikigold_splitself-reported0.785