Tagged_Uni_100v1_NER_Model_3Epochs_AUGMENTED

This model is a fine-tuned version of bert-base-cased on the tagged_uni100v1_wikigold_split dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4031
  • Precision: 0.2364
  • Recall: 0.1843
  • F1: 0.2071
  • Accuracy: 0.8494

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 39 0.4906 0.1526 0.0580 0.0840 0.8187
No log 2.0 78 0.4213 0.2321 0.1736 0.1986 0.8456
No log 3.0 117 0.4031 0.2364 0.1843 0.2071 0.8494

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.11.6
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Evaluation results