DHEIVER's picture
Upload 11 files
a011ee7
|
raw
history blame
2.41 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: Brain_Tumor_Classification_using_swin_transformer
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9949179046129789
          - name: F1
            type: f1
            value: 0.9949179046129789
          - name: Recall
            type: recall
            value: 0.9949179046129789
          - name: Precision
            type: precision
            value: 0.9949179046129789

Brain_Tumor_Classification_using_swin_transformer

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0118
  • Accuracy: 0.9949
  • F1: 0.9949
  • Recall: 0.9949
  • Precision: 0.9949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.081 1.0 180 0.0557 0.9832 0.9832 0.9832 0.9832
0.0816 2.0 360 0.0187 0.9937 0.9937 0.9937 0.9937
0.0543 3.0 540 0.0118 0.9949 0.9949 0.9949 0.9949

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.13.0
  • Datasets 2.6.1
  • Tokenizers 0.13.1