File size: 4,604 Bytes
8cea444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include <stdio.h>
#include <assert.h>

#define MIN_VALUE (-1e38)

template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C,
                               const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
                               F *__restrict__ const _y) {
    const int idx = blockIdx.x * blockDim.x + threadIdx.x;
    const int _b = idx / C;
    const int _c = idx % C;
    const int _offset = _b * T * C + _c;

    F u = _u[_c];
    F w = _w[_c];
    const F *__restrict__ const k = _k + _offset;
    const F *__restrict__ const v = _v + _offset;
    F *__restrict__ const y = _y + _offset;

    // aa and bb are running sums divided by exp(pp) (to avoid overflow)
    F aa = 0, bb = 0, pp = MIN_VALUE;
    for (int i = 0; i < T; i++) {
        const int ii = i * C;
        const F kk = k[ii];
        const F vv = v[ii];

        F ww = u + kk;
        F p = max(pp, ww);
        F e1 = exp(pp - p);
        F e2 = exp(ww - p);
        y[ii] = (e1 * aa + e2 * vv) / (e1 * bb + e2);
        
        ww = w + pp;
        p = max(ww, kk);
        e1 = exp(ww - p);
        e2 = exp(kk - p);
        aa = e1 * aa + e2 * vv;
        bb = e1 * bb + e2;
        pp = p;
    }
}

template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C,
                                const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
                                const F *__restrict__ const _y, const F *__restrict__ const _gy,
                                F *__restrict__ const _gw, F *__restrict__ const _gu, F *__restrict__ const _gk, F *__restrict__ const _gv) {
    const int idx = blockIdx.x * blockDim.x + threadIdx.x;
    const int _b = idx / C;
    const int _c = idx % C;
    const int _offset = _b * T * C + _c;

    F u = _u[_c];
    F w = _w[_c];
    const F *__restrict__ const k = _k + _offset;
    const F *__restrict__ const v = _v + _offset;
    const F *__restrict__ const y = _y + _offset;
    const F *__restrict__ const gy = _gy + _offset;
    F *__restrict__ const gk = _gk + _offset;
    F *__restrict__ const gv = _gv + _offset;

    F q[Tmax], r[Tmax];

    F gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
    for (int i = 0; i < T; i++) {
        const int ii = i * C;
        const F kk = k[ii];
        const F vv = v[ii];
        const F yy = y[ii];

        F ww = u + kk;
        F p = max(pp, ww);
        F e1 = exp(pp - p);
        F e2 = exp(ww - p);
        const F qq = gy[ii] / (e1 * bb + e2);
        gw += (ga - gb * yy) * e1 * qq;
        gu += (vv - yy) * e2 * qq;
        q[i] = qq;
        r[i] = ww - p;

        ww = w + pp;
        p = max(ww, kk);
        e1 = exp(ww - p);
        e2 = exp(kk - p);
        ga = e1 * (aa + ga);
        gb = e1 * (bb + gb);
        aa = e1 * aa + e2 * vv;
        bb = e1 * bb + e2;
        pp = p;
    }
    const int _offsetBC = _b * C + _c;
    _gw[_offsetBC] = gw * _w[_c]; // multiply by w because of w -> -exp(w) in python forward()
    _gu[_offsetBC] = gu;

    aa = 0, bb = 0, pp = MIN_VALUE;
    for (int i = T - 1; i >= 0; i--) {
        const int ii = i * C;
        const F kk = k[ii];
        const F vv = v[ii];
        const F yy = y[ii];
        const F qq = q[i];
        const F rr = r[i];

        F e1 = qq * exp(rr);
        F e2 = exp(kk + pp);
        gk[ii] = e1 * (vv - yy) + e2 * (aa * vv + bb);
        gv[ii] = e1 + e2 * aa;

        const F ww = w + pp;
        const F www = rr - u - kk;
        const F p = max(ww, www);
        e1 = exp(ww - p);
        e2 = qq * exp(www - p);
        aa = e1 * aa + e2;
        bb = e1 * bb - e2 * yy;
        pp = p;
    }
}

void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y) {
    dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
    assert(B * C % threadsPerBlock.x == 0);
    dim3 numBlocks(B * C / threadsPerBlock.x);
    kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}

void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv) {
    dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
    assert(B * C % threadsPerBlock.x == 0);
    dim3 numBlocks(B * C / threadsPerBlock.x);
    kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}