File size: 1,771 Bytes
5c86e41
 
 
 
 
31941f7
 
5c86e41
 
 
 
 
 
 
 
 
 
 
 
 
31941f7
5c86e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: resnet-50-cocoa
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resnet-50-cocoa

This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the SemilleroCV/Cocoa-dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8971
- Accuracy: 0.8628

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4094        | 1.0   | 196  | 1.4768          | 0.8592   |
| 1.0664        | 2.0   | 392  | 1.2090          | 0.8628   |
| 1.0295        | 3.0   | 588  | 0.9924          | 0.8628   |
| 0.8401        | 4.0   | 784  | 0.9143          | 0.8628   |
| 0.8213        | 5.0   | 980  | 0.8971          | 0.8628   |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.3.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3