File size: 2,109 Bytes
4de3b20 79eec1d 4de3b20 79eec1d 4de3b20 79eec1d 4de3b20 79eec1d 4de3b20 79eec1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import torch
from dataset import MiniBPETokenizr, ChatDataset, train, SimpleTokenizr # SimpleTokenizr might be unused now
from model import MiniGPT
import json
from tokenizers import Tokenizer, models, trainers, pre_tokenizers, normalizers
from tokenizers.trainers import BpeTrainer
from tokenizers.normalizers import Lowercase, NFD, StripAccents
from tokenizers.pre_tokenizers import Whitespace
# For debugging purposes, turn on anomaly detection for gradients
torch.autograd.set_detect_anomaly(True)
# Load training data
# NOTE: For underfitting on "10 examples", ensure this file *only* contains those 10 examples,
# and they are long enough (as you confirmed).
with open("./data/overfit_data.jsonl", "r", encoding="utf-8") as f:
texts = [(json.loads(line)["input"] + ' ' + json.loads(line)["output"]) for line in f if line.strip()]
def main():
# 🧠 Initialize HuggingFace BPE tokenizer
tokenizer = Tokenizer(models.BPE(unk_token="<UNK>"))
tokenizer.normalizer = normalizers.Sequence([Lowercase(), NFD(), StripAccents()])
tokenizer.pre_tokenizer = Whitespace()
# 🛠️ BPE Training
trainer = BpeTrainer(
vocab_size=28517,
special_tokens=["<PAD>", "<UNK>", "<END>", "^User:", "MiniGPT:"]
)
tokenizer.train_from_iterator(texts, trainer)
# 💾 Save tokenizer
tokenizer.save("./trained-mini-gpt/tokenizer.json")
hf_tokenizer = Tokenizer.from_file("./trained-mini-gpt/tokenizer.json")
# 🧾 Dataset & Model Init
dataset = ChatDataset(
data="./data/overfit_data.jsonl", # Ensure this path points to your 10-example dataset for testing
tokenizer=hf_tokenizer
)
model = MiniGPT(vocab_size=hf_tokenizer.get_vocab_size())
model.reset_params()
# 🚂 Train
# 🎯 CHANGE 2: Pass an increased learning rate (e.g., 1e-4) to the train function.
# Set epochs to a high number for clear overfitting.
train(model, dataset, hf_tokenizer, epochs=200, filepathh="./data/merged_data.jsonl", learning_rate=1e-4)
if __name__ == "__main__":
main() |