File size: 5,718 Bytes
4de3b20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import json
import torch
from torch.utils.data import Dataset
import re
from collections import Counter


class ChatTokenizer:
    def __init__(self, vocab_size=1000):
        self.vocab_size = vocab_size
        self.token2id = {}
        self.id2token = {}
        self.bpe_ranks = {}

    def tokenize(self, text):
        words = re.findall(r"\w+|\S", text.lower())
        return [' '.join(list(word)) + ' </w>' for word in words]

    def get_stats(self, tokens):
        pairs = Counter()
        for token in tokens:
            symbols = token.split()
            for i in range(len(symbols) - 1):
                pairs[(symbols[i], symbols[i+1])] += 1
        return pairs

    def merge_pairs(self, tokens, pair):
        pattern = re.escape(' '.join(pair))
        replacement = ''.join(pair)
        return [re.sub(rf'\b{pattern}\b', replacement, token) for token in tokens]

    def train(self, texts):
        tokens = []
        for text in texts:
            tokens.extend(self.tokenize(text))
        vocab = Counter(tokens)

        for _ in range(self.vocab_size):
            pairs = self.get_stats(vocab)
            if not pairs:
                break
            best = pairs.most_common(1)[0][0]
            vocab = Counter(self.merge_pairs(vocab.elements(), best))
            self.bpe_ranks[best] = _

        final_tokens = set()
        for token in vocab:
            final_tokens.update(token.split())
        final_tokens.update(["<PAD>", "<UNK>", "<END>", "^user:", "minigpt:"])
        self.token2id = {tok: i for i, tok in enumerate(sorted(final_tokens))}
        self.id2token = {i: tok for tok, i in self.token2id.items()}

    def encode(self, text):
        tokenized = self.tokenize(text)
        for pair, _ in sorted(self.bpe_ranks.items(), key=lambda x: x[1]):
            tokenized = self.merge_pairs(tokenized, pair)
        ids = []
        for token in tokenized:
            for part in token.split():
                ids.append(self.token2id.get(part, self.token2id["<UNK>"]))
        ids.append(self.token2id["<END>"])
        return ids

    def decode(self, token_ids):
        tokens = [self.id2token.get(tid, "<UNK>") for tid in token_ids]
        sentence = ""
        for tok in tokens:
            if tok == "<END>":
                break
            elif tok == "</w>":
                sentence += " "
            elif tok in {"<PAD>", "<UNK>"}:
                continue
            else:
                sentence += tok
        return sentence.strip()

    def save(self, path):
        with open(path, "w", encoding="utf-8") as f:
            json.dump({
                "token2id": self.token2id,
                "bpe_ranks": {f"{a} {b}": r for (a, b), r in self.bpe_ranks.items()}
            }, f)

    def load(self, path):
        with open(path, "r", encoding="utf-8") as f:
            data = json.load(f)
        self.token2id = {k: int(v) for k, v in data["token2id"].items()}
        self.id2token = {v: k for k, v in self.token2id.items()}
        self.bpe_ranks = {tuple(k.split()): v for k, v in data["bpe_ranks"].items()}

    def __len__(self):
        return len(self.token2id)

    @property
    def stoi(self):
        return self.token2id

    @property
    def itos(self):
        return self.id2token

    @property
    def vocab_size(self):
        return len(self.token2id)


class ChatDataset(Dataset):
    def __init__(self, file_path, tokenizer, block_size=64):
        self.samples = []
        with open(file_path, "r", encoding="utf-8") as f:
            for line in f:
                line = line.strip()
                if not line:
                    continue
                data = json.loads(line)
                text = data["text"].strip()

                # Wrap in format: ^User: ... MiniGPT: ...
                if not text.lower().startswith("^user:"):
                    text = "^User: " + text
                if "MiniGPT:" not in text:
                    text += "\nMiniGPT:"

                tokens = tokenizer.encode(text)

                for i in range(0, len(tokens) - block_size):
                    x = tokens[i:i + block_size]
                    y = tokens[i + 1:i + block_size + 1]
                    self.samples.append((x, y))

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        x, y = self.samples[idx]
        return torch.tensor(x), torch.tensor(y)
    
    


class ChatDataset(Dataset):
    def __init__(self, file_path, tokenizer, block_size=64):
        self.samples = []
        with open(file_path, "r", encoding="utf-8") as f:
            for line in f:
                line = line.strip()
                if not line:
                    continue
                data = json.loads(line)
                text = data["text"].strip()
                
                # Wrap in format: ^User: ... MiniGPT: ...
                if not text.lower().startswith("^user:"):
                    text = "^User: " + text
                if "MiniGPT:" not in text:
                    text += "\nMiniGPT:"

                tokens = tokenizer.encode(text) + [tokenizer.stoi["<END>"]]
                
                for i in range(0, len(tokens) - block_size):
                    x = tokens[i:i + block_size]
                    y = tokens[i + 1:i + block_size + 1]
                    self.samples.append((x, y))

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        x, y = self.samples[idx]
        return torch.tensor(x), torch.tensor(y)