File size: 9,969 Bytes
79eec1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from tokenizers import Tokenizer
from tqdm import tqdm
import os
import re
from collections import Counter
import multiprocessing
from torch.utils.data import random_split
multiprocessing.set_start_method("spawn", force=True)

class ChatDataset(Dataset):
    def __init__(self, data, tokenizer, block_size=64):
        self.tokenizer = tokenizer
        self.block_size = block_size
        self.data = self.tokenize_data(data)

    def tokenize_data(self, data):
        chunks = []
        with open(data, "r", encoding="utf-8") as f:
            for d in f:
                line = json.loads(d.strip())
                # Fix duplicated instruction
                text = "^User: " + line["instruction"].strip() + " MiniGPT: " + line["output"].strip() + " <END>"
                encoding = self.tokenizer.encode(text)
                tokens = encoding.ids
                #print(tokens)
                if len(tokens) < self.block_size:
                    continue
                for i in range(0, len(tokens) - self.block_size + 1, self.block_size):
                    chunk = tokens[i:i + self.block_size]
                    if len(chunk) == self.block_size:
                        chunks.append(chunk)
        return chunks

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        chunk = self.data[idx]
        x = torch.tensor(chunk[:-1])
        y = torch.tensor(chunk[1:])
        return x, y


class MiniBPETokenizr:
    def __init__(self):
        self.stoi = {}
        self.itos = {}
        self.vocab_size = 0

    def tokenize(self, text):
        text = text.lower().strip()
        words = re.findall(r"[a-zA-Z0-9]+|[^\w\s]", text)
        return [list(w) + ['</w>'] if w.isalnum() else [w] for w in words]

    def get_stats(self, corpus):
        pairs = Counter()
        for tokens in corpus:
            for i in range(len(tokens) - 1):
                pairs[(tokens[i], tokens[i + 1])] += 1
        return pairs

    def merge_vocab(self, corpus, pair_to_merge):
        bigram = re.escape(' '.join(pair_to_merge))
        pattern = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
        merged = []
        for tokens in corpus:
            token_str = ' '.join(tokens)
            token_str = pattern.sub(''.join(pair_to_merge), token_str)
            merged.append(token_str.split())
        return merged

    def train(self, texts, merge_limit=1000):
        corpus = [sum(self.tokenize(t), []) for t in texts]
        merges_done = 0
        loop = tqdm(total=merge_limit, desc="Training BPE")

        while merges_done < merge_limit:
            pairs = self.get_stats(corpus)
            if not pairs:
                break
            best = max(pairs, key=pairs.get)
            corpus = self.merge_vocab(corpus, best)
            merges_done += 1
            loop.update(1)

        vocab = set(tok for seq in corpus for tok in seq)
        vocab.update(["<PAD>", "<UNK>", "<END>", "^user:", "minigpt:"])
        self.stoi = {tok: i for i, tok in enumerate(sorted(vocab))}
        self.itos = {i: tok for tok, i in self.stoi.items()}
        self.vocab_size = len(self.stoi)

    def encode(self, text):
        tokens = sum(self.tokenize(text), [])
        output = []
        i = 0
        while i < len(tokens):
            j = len(tokens)
            while j > i:
                candidate = ''.join(tokens[i:j])
                if candidate in self.stoi:
                    output.append(self.stoi[candidate])
                    i = j
                    break
                j -= 1
            else:
                output.append(self.stoi.get("<UNK>", 1))
                i += 1
        return output

    def decode(self, token_ids):
        tokens = [self.itos.get(i, "<UNK>") for i in token_ids]
        text = ' '.join(t.replace('</w>', '') for t in tokens if t not in {"<PAD>", "<END>", "<UNK>"})
        text = re.sub(r'\s([?.!,:;])', r'\1', text)
        return text.strip()

    def save(self, path):
        with open(path, "w", encoding="utf-8") as f:
            json.dump({"stoi": self.stoi, "itos": self.itos}, f)

    def load(self, path):
        with open(path, "r", encoding="utf-8") as f:
            data = json.load(f)
            self.stoi = {k: int(v) for k, v in data["stoi"].items()}
            self.itos = {int(v): k for k, v in self.stoi.items()}
        self.vocab_size = len(self.stoi)

class SimpleTokenizr:
    def __init__(self):
        self.stoi = {}
        self.itos = {}

    def tokenize(self, text):
        return re.findall(r"[a-zA-Z']+|\d+|[^\w\s]", text.lower())

    def train(self, texts):
        vocab = set()
        for text in texts:
            tokens = self.tokenize(text)
            vocab.update(tokens)
        vocab.update(["<PAD>", "<UNK>", "<END>", "^user :", "minigpt :", "MiniGPT :", ":"])
        sorted_vocab = sorted(vocab)
        self.stoi = {token: idx for idx, token in enumerate(sorted_vocab)}
        self.itos = {idx: token for token, idx in self.stoi.items()}

    def encode(self, text):
        tokens = self.tokenize(text)
        return [self.stoi.get(tok, self.stoi["<UNK>"]) for tok in tokens] + [self.stoi["<END>"]]

    def decode(self, token_ids):
        tokens = [self.itos.get(i, "<UNK>") for i in token_ids]
        clean_tokens = [tok for tok in tokens if tok not in {"<PAD>", "<UNK>", "<END>"}]
        text = ''
        for i, tok in enumerate(clean_tokens):
            if re.match(r"[.,!?;:]", tok):
                text += tok
            elif i > 0:
                text += ' ' + tok
            else:
                text += tok
        return text.strip().capitalize()

    def save(self, path):
        with open(path, "w", encoding="utf-8") as f:
            json.dump({"stoi": self.stoi, "itos": self.itos}, f)

    def load(self, path):
        with open(path, "r", encoding="utf-8") as f:
            data = json.load(f)
            self.stoi = {k: int(v) for k, v in data["stoi"].items()}
            self.itos = {int(k): v for v, k in self.stoi.items()}

    def __len__(self):
        return len(self.stoi)

    @property
    def vocab_size(self):
        return len(self.stoi)

def validate(model, dataloader, device):
    model.eval()
    total_loss, correct, total = 0, 0, 0
    with torch.no_grad():
        for x, y in dataloader:
            x, y = x.to(device), y.to(device)
            logits = model(x)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), y.view(-1))
            total_loss += loss.item()

            preds = torch.argmax(logits, dim=-1)
            correct += (preds == y).sum().item()
            total += y.numel()

    avg_loss = total_loss / len(dataloader)
    accuracy = 100 * correct / total
    return avg_loss, accuracy

def train(model, dataset, tokenizer, epochs, filepathh, start_epoch=0, start_step=0):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)

    # πŸ”€ Proper train/val split
    val_size = int(0.1 * len(dataset))
    train_size = len(dataset) - val_size
    train_set, val_set = random_split(dataset, [train_size, val_size])

    train_loader = DataLoader(train_set, batch_size=10, shuffle=True, num_workers=2)
    val_loader = DataLoader(val_set, batch_size=10, shuffle=False, num_workers=2)

    optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)

    checkpoint_path = "./trained-mini-gpt/checkpoint-mini-gpt.pth"
    if os.path.exists(checkpoint_path):
        checkpoint = torch.load(checkpoint_path)
        if "model_state_dict" in checkpoint:
            model.load_state_dict(checkpoint["model_state_dict"])
            optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
            start_epoch = checkpoint["epoch"]
            start_step = checkpoint["step"]
        else:
            model.load_state_dict(checkpoint)
    else:
        print("πŸš€ Starting from scratch.")

    total_steps = start_step

    for epoch in range(start_epoch, epochs):
        model.train()
        total_loss, correct, total = 0, 0, 0

        loop = tqdm(enumerate(train_loader), total=len(train_loader), desc=f"Epoch {epoch+1}/{epochs}")
        for step, (x, y) in loop:
            x, y = x.to(device), y.to(device)
            logits = model(x)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), y.view(-1))

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()
            preds = torch.argmax(logits, dim=-1)
            correct += (preds == y).sum().item()
            total += y.numel()
            acc = 100 * correct / total
            

            loop.set_postfix(loss=loss.item(), acc=acc)
            #if step % 100 == 0:
            #    torch.save({
            #        "model_state_dict": model.state_dict(),
            #        "optimizer_state_dict": optimizer.state_dict(),
            #        "epoch": epoch,
            #        "step": total_steps
            #    }, checkpoint_path)

        # πŸ” Validate after each epoch
        val_loss, val_acc = validate(model, val_loader, device)
        print(f"βœ… Val Loss: {val_loss:.4f} | Val Accuracy: {val_acc:.2f}%")

        # πŸ’Ύ Save checkpoint
        torch.save({
            "model_state_dict": model.state_dict(),
            "optimizer_state_dict": optimizer.state_dict(),
            "epoch": epoch,
            "step": total_steps
        }, checkpoint_path)

    torch.save(model.state_dict(), "./trained-mini-gpt/mini-gpt.pth")
    print("πŸŽ‰ Training complete.")