File size: 9,969 Bytes
79eec1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from tokenizers import Tokenizer
from tqdm import tqdm
import os
import re
from collections import Counter
import multiprocessing
from torch.utils.data import random_split
multiprocessing.set_start_method("spawn", force=True)
class ChatDataset(Dataset):
def __init__(self, data, tokenizer, block_size=64):
self.tokenizer = tokenizer
self.block_size = block_size
self.data = self.tokenize_data(data)
def tokenize_data(self, data):
chunks = []
with open(data, "r", encoding="utf-8") as f:
for d in f:
line = json.loads(d.strip())
# Fix duplicated instruction
text = "^User: " + line["instruction"].strip() + " MiniGPT: " + line["output"].strip() + " <END>"
encoding = self.tokenizer.encode(text)
tokens = encoding.ids
#print(tokens)
if len(tokens) < self.block_size:
continue
for i in range(0, len(tokens) - self.block_size + 1, self.block_size):
chunk = tokens[i:i + self.block_size]
if len(chunk) == self.block_size:
chunks.append(chunk)
return chunks
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
chunk = self.data[idx]
x = torch.tensor(chunk[:-1])
y = torch.tensor(chunk[1:])
return x, y
class MiniBPETokenizr:
def __init__(self):
self.stoi = {}
self.itos = {}
self.vocab_size = 0
def tokenize(self, text):
text = text.lower().strip()
words = re.findall(r"[a-zA-Z0-9]+|[^\w\s]", text)
return [list(w) + ['</w>'] if w.isalnum() else [w] for w in words]
def get_stats(self, corpus):
pairs = Counter()
for tokens in corpus:
for i in range(len(tokens) - 1):
pairs[(tokens[i], tokens[i + 1])] += 1
return pairs
def merge_vocab(self, corpus, pair_to_merge):
bigram = re.escape(' '.join(pair_to_merge))
pattern = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
merged = []
for tokens in corpus:
token_str = ' '.join(tokens)
token_str = pattern.sub(''.join(pair_to_merge), token_str)
merged.append(token_str.split())
return merged
def train(self, texts, merge_limit=1000):
corpus = [sum(self.tokenize(t), []) for t in texts]
merges_done = 0
loop = tqdm(total=merge_limit, desc="Training BPE")
while merges_done < merge_limit:
pairs = self.get_stats(corpus)
if not pairs:
break
best = max(pairs, key=pairs.get)
corpus = self.merge_vocab(corpus, best)
merges_done += 1
loop.update(1)
vocab = set(tok for seq in corpus for tok in seq)
vocab.update(["<PAD>", "<UNK>", "<END>", "^user:", "minigpt:"])
self.stoi = {tok: i for i, tok in enumerate(sorted(vocab))}
self.itos = {i: tok for tok, i in self.stoi.items()}
self.vocab_size = len(self.stoi)
def encode(self, text):
tokens = sum(self.tokenize(text), [])
output = []
i = 0
while i < len(tokens):
j = len(tokens)
while j > i:
candidate = ''.join(tokens[i:j])
if candidate in self.stoi:
output.append(self.stoi[candidate])
i = j
break
j -= 1
else:
output.append(self.stoi.get("<UNK>", 1))
i += 1
return output
def decode(self, token_ids):
tokens = [self.itos.get(i, "<UNK>") for i in token_ids]
text = ' '.join(t.replace('</w>', '') for t in tokens if t not in {"<PAD>", "<END>", "<UNK>"})
text = re.sub(r'\s([?.!,:;])', r'\1', text)
return text.strip()
def save(self, path):
with open(path, "w", encoding="utf-8") as f:
json.dump({"stoi": self.stoi, "itos": self.itos}, f)
def load(self, path):
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
self.stoi = {k: int(v) for k, v in data["stoi"].items()}
self.itos = {int(v): k for k, v in self.stoi.items()}
self.vocab_size = len(self.stoi)
class SimpleTokenizr:
def __init__(self):
self.stoi = {}
self.itos = {}
def tokenize(self, text):
return re.findall(r"[a-zA-Z']+|\d+|[^\w\s]", text.lower())
def train(self, texts):
vocab = set()
for text in texts:
tokens = self.tokenize(text)
vocab.update(tokens)
vocab.update(["<PAD>", "<UNK>", "<END>", "^user :", "minigpt :", "MiniGPT :", ":"])
sorted_vocab = sorted(vocab)
self.stoi = {token: idx for idx, token in enumerate(sorted_vocab)}
self.itos = {idx: token for token, idx in self.stoi.items()}
def encode(self, text):
tokens = self.tokenize(text)
return [self.stoi.get(tok, self.stoi["<UNK>"]) for tok in tokens] + [self.stoi["<END>"]]
def decode(self, token_ids):
tokens = [self.itos.get(i, "<UNK>") for i in token_ids]
clean_tokens = [tok for tok in tokens if tok not in {"<PAD>", "<UNK>", "<END>"}]
text = ''
for i, tok in enumerate(clean_tokens):
if re.match(r"[.,!?;:]", tok):
text += tok
elif i > 0:
text += ' ' + tok
else:
text += tok
return text.strip().capitalize()
def save(self, path):
with open(path, "w", encoding="utf-8") as f:
json.dump({"stoi": self.stoi, "itos": self.itos}, f)
def load(self, path):
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
self.stoi = {k: int(v) for k, v in data["stoi"].items()}
self.itos = {int(k): v for v, k in self.stoi.items()}
def __len__(self):
return len(self.stoi)
@property
def vocab_size(self):
return len(self.stoi)
def validate(model, dataloader, device):
model.eval()
total_loss, correct, total = 0, 0, 0
with torch.no_grad():
for x, y in dataloader:
x, y = x.to(device), y.to(device)
logits = model(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), y.view(-1))
total_loss += loss.item()
preds = torch.argmax(logits, dim=-1)
correct += (preds == y).sum().item()
total += y.numel()
avg_loss = total_loss / len(dataloader)
accuracy = 100 * correct / total
return avg_loss, accuracy
def train(model, dataset, tokenizer, epochs, filepathh, start_epoch=0, start_step=0):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# π Proper train/val split
val_size = int(0.1 * len(dataset))
train_size = len(dataset) - val_size
train_set, val_set = random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_set, batch_size=10, shuffle=True, num_workers=2)
val_loader = DataLoader(val_set, batch_size=10, shuffle=False, num_workers=2)
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
checkpoint_path = "./trained-mini-gpt/checkpoint-mini-gpt.pth"
if os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
if "model_state_dict" in checkpoint:
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
start_epoch = checkpoint["epoch"]
start_step = checkpoint["step"]
else:
model.load_state_dict(checkpoint)
else:
print("π Starting from scratch.")
total_steps = start_step
for epoch in range(start_epoch, epochs):
model.train()
total_loss, correct, total = 0, 0, 0
loop = tqdm(enumerate(train_loader), total=len(train_loader), desc=f"Epoch {epoch+1}/{epochs}")
for step, (x, y) in loop:
x, y = x.to(device), y.to(device)
logits = model(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), y.view(-1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
preds = torch.argmax(logits, dim=-1)
correct += (preds == y).sum().item()
total += y.numel()
acc = 100 * correct / total
loop.set_postfix(loss=loss.item(), acc=acc)
#if step % 100 == 0:
# torch.save({
# "model_state_dict": model.state_dict(),
# "optimizer_state_dict": optimizer.state_dict(),
# "epoch": epoch,
# "step": total_steps
# }, checkpoint_path)
# π Validate after each epoch
val_loss, val_acc = validate(model, val_loader, device)
print(f"β
Val Loss: {val_loss:.4f} | Val Accuracy: {val_acc:.2f}%")
# πΎ Save checkpoint
torch.save({
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"epoch": epoch,
"step": total_steps
}, checkpoint_path)
torch.save(model.state_dict(), "./trained-mini-gpt/mini-gpt.pth")
print("π Training complete.") |