microchar_moe / README.md
Corianas's picture
Upload folder using huggingface_hub
cb6a088 verified
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- Corianas/Microllama_Char_88k_step
base_model:
- Corianas/Microllama_Char_88k_step
- Corianas/Microllama_Char_88k_step
---
# microchar_moe
microchar_moe is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Corianas/Microllama_Char_88k_step](https://huggingface.co/Corianas/Microllama_Char_88k_step)
* [Corianas/Microllama_Char_88k_step](https://huggingface.co/Corianas/Microllama_Char_88k_step)
## 🧩 Configuration
```yaml
base_model: Corianas/Microllama_Char_88k_step
gate_mode: random # one of "hidden", "cheap_embed", or "random"
dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
## (optional)
# experts_per_token: 2
experts:
- source_model: Corianas/Microllama_Char_88k_step
positive_prompts:
- ""
## (optional)
# negative_prompts:
# - "This is a prompt expert_model_1 should not be used for"
- source_model: Corianas/Microllama_Char_88k_step
positive_prompts:
- ""
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Corianas/microchar_moe"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```