File size: 1,476 Bytes
f96cce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ea2033
ba1fa47
 
4ea2033
 
ba1fa47
 
cc3c93d
 
 
bda79bb
ba1fa47
0d9f674
ba1fa47
0d9f674
ba1fa47
 
0d9f674
 
ba1fa47
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
license: apache-2.0
datasets:
- stanfordnlp/SHP
- Anthropic/hh-rlhf
- OpenAssistant/oasst1
language:
- en
metrics:
- accuracy
tags:
- human feedback
- rlhf
- preferences
- alignment
- HALO
- halos
- dpo
- rl
---

![halos](https://gist.github.com/assets/29318529/fe2d8391-dbd1-4b7e-9dc4-7cb97e55bc06)

This repo contains the model checkpoints for:
- model family <b>pythia12-0b</b>
- optimized with the loss <b>DPO</b>
- aligned using the SHP, Anthropic HH and Open Assistant datasets.

To prompt archangel models, ensure that the format is consistent with that of TuluV2, i.e. `"<s>\n<|user|>\n" + <prompt> + "\n<|assistant|>\n</s>"`. 
Note that the BOS / EOS tokens should be excluded if automatically added by your tokenizer during batch collation.

Please refer to our [code repository](https://github.com/ContextualAI/HALOs) or [blog](https://contextual.ai/better-cheaper-faster-llm-alignment-with-kto/) which contains intructions for training your own HALOs and links to our model cards.

If you find this repo or the technical paper useful in your research, please feel free to cite [our work](https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf):
```
@techreport{ethayarajh2023halos,
  author = {Ethayarajh, Kawin and Xu, Winnie, and Jurafsky, Dan and Kiela, Douwe},
  title = {Human-Centered Loss Functions (HALOs)},
  institution = {Contextual AI},
  note = {https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf},
  year = {2023},
}
```