Create app.py
#4
by
Jesse1981
- opened
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import LDMPipeline
|
2 |
+
import torch
|
3 |
+
import PIL.Image
|
4 |
+
import gradio as gr
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
pipeline = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
|
9 |
+
|
10 |
+
def predict(steps, seed):
|
11 |
+
generator = torch.manual_seed(seed)
|
12 |
+
for i in range(1,steps):
|
13 |
+
yield pipeline(generator=generator, num_inference_steps=i)["sample"][0]
|
14 |
+
|
15 |
+
random_seed = random.randint(0, 2147483647)
|
16 |
+
gr.Interface(
|
17 |
+
predict,
|
18 |
+
inputs=[
|
19 |
+
gr.inputs.Slider(1, 100, label='Inference Steps', default=5, step=1),
|
20 |
+
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
|
21 |
+
],
|
22 |
+
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
|
23 |
+
css="#output_image{width: 256px}",
|
24 |
+
title="ldm-celebahq-256 - 🧨 diffusers library",
|
25 |
+
description="This Spaces contains an unconditional Latent Diffusion process for the <a href=\"https://huggingface.co/CompVis/ldm-celebahq-256\">ldm-celebahq-256</a> face generator model by <a href=\"https://huggingface.co/CompVis\">CompVis</a> using the <a href=\"https://github.com/huggingface/diffusers\">diffusers library</a>. The goal of this demo is to showcase the diffusers library capabilities. If you want the state-of-the-art experience with Latent Diffusion text-to-image check out the <a href=\"https://huggingface.co/spaces/multimodalart/latentdiffusion\">main Spaces</a>.",
|
26 |
+
).queue().launch()
|