YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
from openrlhf.models.model import get_llm_for_sequence_regression
from transformers import AutoTokenizer
from typing import List
import torch
import regex as re
def strip_sequence(text, pad_token, eos_token):
pad_token_escaped = re.escape(pad_token)
eos_token_escaped = re.escape(eos_token)
pattern = f"^({eos_token_escaped}|{pad_token_escaped})+"
text = re.sub(pattern, "", text)
pattern = f"({eos_token_escaped}|{pad_token_escaped})+$"
text = re.sub(pattern, "", text)
return text
class RewardModelProxy:
def __init__(
self,
reward_pretrain:str,
max_len:int,
batch_size:int,
normalize_reward:bool=False,
flash_attn:bool=True,
bf16:bool=True,
load_in_4bit:bool=False,
value_head_prefix:str="score",
disable_fast_tokenizer:bool=False,
):
self.reward_model = get_llm_for_sequence_regression(
reward_pretrain,
"reward",
normalize_reward=normalize_reward,
use_flash_attention_2=flash_attn,
bf16=bf16,
load_in_4bit=load_in_4bit,
value_head_prefix=value_head_prefix,
device_map="cuda:5",
)
self.reward_model.eval()
self.tokenizer = AutoTokenizer.from_pretrained(reward_pretrain, trust_remote_code=True, use_fast=not disable_fast_tokenizer)
self.max_length = max_len
self.batch_size = batch_size
def get_reward(self, conversations:List[List[dict]]):
if self.batch_size is None:
batch_size = len(conversations)
else:
batch_size = self.batch_size
queries = []
for conversation in conversations:
query = self.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=False)
queries.append(query)
# remove pad_token
for i in range(len(queries)):
queries[i] = (
strip_sequence(queries[i], self.tokenizer.pad_token, self.tokenizer.eos_token)
+ self.tokenizer.eos_token
)
scores = []
# batch
with torch.no_grad():
for i in range(0, len(queries), batch_size):
inputs = self.tokenize_fn(
queries[i : min(len(queries), i + batch_size)], device=self.reward_model.device
)
r = self.reward_model(inputs["input_ids"], inputs["attention_mask"])
r = r.tolist()
scores.extend(r)
return scores
def tokenize_fn(self, texts, device):
batch = self.tokenizer(
texts,
return_tensors="pt",
add_special_tokens=False,
max_length=self.max_length,
padding=True,
truncation=True,
)
return {k: v.to(device) for k, v in batch.items()}
def __call__(self, conversations:List[List[dict]]):
return self.get_reward(conversations)
RM = RewardModelProxy(
"CodeDPO/Qwen2.5-Coder-7B_with_margin_scalebt",
max_len=2048,
batch_size=8,
)
conversations = [
[
{"role": "system", "content": "Hello, how can I help you today?"},
{"role": "user", "content": "I want to book a flight."},
],
]
scores = RM(conversations)
print(scores)
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.