KMB_SimCSE

This model is a fine-tuned version of x2bee/KoModernBERT-base-mlm on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0387
  • Pearson Cosine: 0.7824
  • Spearman Cosine: 0.7845
  • Pearson Manhattan: 0.7335
  • Spearman Manhattan: 0.7460
  • Pearson Euclidean: 0.7337
  • Spearman Euclidean: 0.7463
  • Pearson Dot: 0.6362
  • Spearman Dot: 0.6532

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Pearson Cosine Spearman Cosine Pearson Manhattan Spearman Manhattan Pearson Euclidean Spearman Euclidean Pearson Dot Spearman Dot
1.0084 0.1172 250 0.1579 0.6838 0.6994 0.6615 0.6693 0.6621 0.6694 0.3480 0.3442
0.7072 0.2343 500 0.1364 0.7226 0.7375 0.7207 0.7263 0.7214 0.7271 0.4002 0.3910
0.6207 0.3515 750 0.1194 0.7371 0.7509 0.7295 0.7398 0.7300 0.7401 0.4517 0.4462
0.5767 0.4686 1000 0.1147 0.7508 0.7636 0.7395 0.7502 0.7400 0.7511 0.5170 0.5181
0.5026 0.5858 1250 0.1047 0.7507 0.7635 0.7455 0.7558 0.7459 0.7564 0.5487 0.5531
0.5192 0.7029 1500 0.1166 0.7522 0.7673 0.7487 0.7591 0.7489 0.7594 0.5055 0.5053
0.5046 0.8201 1750 0.1110 0.7555 0.7675 0.7582 0.7675 0.7581 0.7672 0.5303 0.5391
0.5055 0.9372 2000 0.1062 0.7546 0.7726 0.7501 0.7650 0.7502 0.7651 0.5638 0.5710
0.4177 1.0544 2250 0.0942 0.7577 0.7709 0.7511 0.7635 0.7510 0.7633 0.5577 0.5635
0.4136 1.1715 2500 0.0915 0.7612 0.7727 0.7584 0.7696 0.7586 0.7696 0.5554 0.5595
0.4425 1.2887 2750 0.0928 0.7605 0.7726 0.7461 0.7591 0.7463 0.7592 0.5498 0.5512
0.3708 1.4058 3000 0.0819 0.7670 0.7783 0.7478 0.7634 0.7481 0.7637 0.5834 0.5847
0.3934 1.5230 3250 0.0848 0.7709 0.7814 0.7539 0.7692 0.7542 0.7689 0.5655 0.5668
0.3203 1.6401 3500 0.0781 0.7706 0.7810 0.7529 0.7689 0.7531 0.7691 0.5871 0.5891
0.4052 1.7573 3750 0.0824 0.7705 0.7816 0.7628 0.7771 0.7628 0.7771 0.5909 0.5989
0.3723 1.8744 4000 0.0819 0.7720 0.7840 0.7515 0.7679 0.7520 0.7685 0.5711 0.5713
0.3645 1.9916 4250 0.0802 0.7676 0.7804 0.7560 0.7704 0.7560 0.7703 0.5685 0.5701
0.3007 2.1087 4500 0.0662 0.7682 0.7799 0.7572 0.7721 0.7574 0.7721 0.5973 0.5981
0.2397 2.2259 4750 0.0617 0.7693 0.7782 0.7501 0.7655 0.7502 0.7652 0.5855 0.5898
0.28 2.3430 5000 0.0645 0.7654 0.7760 0.7567 0.7705 0.7569 0.7705 0.5925 0.5970
0.2631 2.4602 5250 0.0639 0.7712 0.7798 0.7561 0.7705 0.7562 0.7705 0.5715 0.5731
0.2488 2.5773 5500 0.0636 0.7736 0.7838 0.7537 0.7687 0.7538 0.7685 0.5835 0.5861
0.2557 2.6945 5750 0.0614 0.7739 0.7830 0.7570 0.7716 0.7571 0.7717 0.6008 0.6041
0.2699 2.8116 6000 0.0636 0.7722 0.7795 0.7570 0.7699 0.7572 0.7701 0.5844 0.5864
0.2794 2.9288 6250 0.0639 0.7704 0.7800 0.7582 0.7745 0.7581 0.7746 0.5817 0.5793
0.1778 3.0459 6500 0.0526 0.7738 0.7811 0.7574 0.7739 0.7573 0.7739 0.6193 0.6255
0.1791 3.1631 6750 0.0519 0.7728 0.7783 0.7540 0.7704 0.7538 0.7700 0.6116 0.6182
0.201 3.2802 7000 0.0511 0.7755 0.7825 0.7506 0.7671 0.7503 0.7670 0.6039 0.6071
0.225 3.3974 7250 0.0513 0.7684 0.7749 0.7515 0.7689 0.7514 0.7692 0.5867 0.5894
0.1748 3.5145 7500 0.0502 0.7752 0.7801 0.7459 0.7630 0.7461 0.7636 0.5877 0.5949
0.2045 3.6317 7750 0.0512 0.7787 0.7856 0.7457 0.7636 0.7460 0.7642 0.6113 0.6156
0.1821 3.7488 8000 0.0502 0.7782 0.7842 0.7543 0.7707 0.7545 0.7710 0.6045 0.6069
0.1783 3.8660 8250 0.0491 0.7772 0.7829 0.7455 0.7630 0.7459 0.7637 0.5915 0.5984
0.2055 3.9831 8500 0.0504 0.7776 0.7832 0.7476 0.7658 0.7480 0.7662 0.5959 0.6017
0.1345 4.1003 8750 0.0467 0.7762 0.7802 0.7429 0.7606 0.7435 0.7611 0.6206 0.6303
0.1506 4.2174 9000 0.0477 0.7711 0.7759 0.7466 0.7625 0.7473 0.7631 0.5978 0.6025
0.1565 4.3346 9250 0.0477 0.7717 0.7768 0.7481 0.7641 0.7486 0.7645 0.6026 0.6102
0.1577 4.4517 9500 0.0442 0.7794 0.7824 0.7439 0.7627 0.7444 0.7630 0.6182 0.6291
0.1463 4.5689 9750 0.0456 0.7764 0.7821 0.7401 0.7602 0.7405 0.7604 0.5941 0.5991
0.16 4.6860 10000 0.0460 0.7749 0.7793 0.7495 0.7658 0.7498 0.7660 0.6140 0.6192
0.148 4.8032 10250 0.0436 0.7817 0.7855 0.7421 0.7596 0.7425 0.7601 0.6171 0.6239
0.1382 4.9203 10500 0.0446 0.7824 0.7872 0.7437 0.7620 0.7443 0.7625 0.6330 0.6424
0.1109 5.0375 10750 0.0426 0.7796 0.7846 0.7431 0.7600 0.7434 0.7602 0.6195 0.6249
0.1009 5.1546 11000 0.0431 0.7807 0.7835 0.7423 0.7591 0.7428 0.7591 0.6237 0.6377
0.1082 5.2718 11250 0.0438 0.7774 0.7818 0.7430 0.7591 0.7433 0.7593 0.6039 0.6129
0.1138 5.3889 11500 0.0415 0.7829 0.7870 0.7405 0.7560 0.7410 0.7561 0.6347 0.6464
0.1015 5.5061 11750 0.0420 0.7778 0.7811 0.7437 0.7592 0.7435 0.7589 0.6249 0.6370
0.1153 5.6232 12000 0.0448 0.7730 0.7784 0.7451 0.7598 0.7453 0.7596 0.6141 0.6214
0.1269 5.7404 12250 0.0420 0.7802 0.7840 0.7413 0.7562 0.7417 0.7564 0.6217 0.6311
0.0888 5.8575 12500 0.0414 0.7805 0.7841 0.7408 0.7567 0.7412 0.7568 0.6245 0.6365
0.1202 5.9747 12750 0.0431 0.7793 0.7835 0.7412 0.7572 0.7414 0.7575 0.6261 0.6405
0.0941 6.0918 13000 0.0399 0.7838 0.7873 0.7388 0.7527 0.7391 0.7530 0.6493 0.6642
0.081 6.2090 13250 0.0405 0.7814 0.7854 0.7353 0.7513 0.7355 0.7514 0.6356 0.6478
0.0807 6.3261 13500 0.0401 0.7838 0.7879 0.7339 0.7510 0.7344 0.7513 0.6450 0.6615
0.0863 6.4433 13750 0.0405 0.7814 0.7841 0.7404 0.7587 0.7408 0.7589 0.6324 0.6479
0.0948 6.5604 14000 0.0397 0.7830 0.7866 0.7410 0.7578 0.7415 0.7579 0.6308 0.6460
0.0919 6.6776 14250 0.0409 0.7820 0.7858 0.7402 0.7545 0.7403 0.7544 0.6341 0.6459
0.0784 6.7948 14500 0.0408 0.7794 0.7839 0.7308 0.7495 0.7312 0.7494 0.6306 0.6427
0.0821 6.9119 14750 0.0406 0.7789 0.7822 0.7265 0.7446 0.7270 0.7446 0.6377 0.6567
0.0792 7.0291 15000 0.0401 0.7800 0.7833 0.7398 0.7569 0.7405 0.7572 0.6338 0.6467
0.0698 7.1462 15250 0.0396 0.7822 0.7855 0.7341 0.7507 0.7346 0.7509 0.6381 0.6552
0.0699 7.2634 15500 0.0392 0.7820 0.7851 0.7322 0.7502 0.7325 0.7502 0.6466 0.6629
0.0739 7.3805 15750 0.0389 0.7865 0.7886 0.7323 0.7491 0.7328 0.7495 0.6412 0.6589
0.0745 7.4977 16000 0.0397 0.7794 0.7827 0.7366 0.7524 0.7373 0.7524 0.6380 0.6504
0.0779 7.6148 16250 0.0391 0.7826 0.7846 0.7326 0.7462 0.7333 0.7467 0.6372 0.6532
0.078 7.7320 16500 0.0397 0.7810 0.7826 0.7299 0.7461 0.7300 0.7457 0.6364 0.6555
0.0699 7.8491 16750 0.0405 0.7811 0.7837 0.7308 0.7468 0.7312 0.7470 0.6315 0.6426
0.0735 7.9663 17000 0.0394 0.7804 0.7823 0.7320 0.7455 0.7326 0.7462 0.6468 0.6607
0.0682 8.0834 17250 0.0386 0.7845 0.7869 0.7306 0.7447 0.7311 0.7449 0.6431 0.6613
0.0526 8.2006 17500 0.0389 0.7824 0.7832 0.7272 0.7431 0.7275 0.7431 0.6370 0.6539
0.0558 8.3177 17750 0.0385 0.7856 0.7865 0.7370 0.7513 0.7376 0.7518 0.6517 0.6679
0.0633 8.4349 18000 0.0392 0.7822 0.7845 0.7388 0.7537 0.7395 0.7542 0.6512 0.6664
0.0568 8.5520 18250 0.0389 0.7826 0.7831 0.7358 0.7510 0.7362 0.7509 0.6378 0.6536
0.0645 8.6692 18500 0.0377 0.7888 0.7892 0.7315 0.7495 0.7319 0.7499 0.6514 0.6704
0.0563 8.7863 18750 0.0376 0.7870 0.7878 0.7285 0.7451 0.7289 0.7454 0.6393 0.6606
0.0669 8.9035 19000 0.0383 0.7850 0.7866 0.7238 0.7433 0.7244 0.7437 0.6359 0.6571
0.0436 9.0206 19250 0.0377 0.7855 0.7856 0.7289 0.7462 0.7293 0.7465 0.6489 0.6696
0.047 9.1378 19500 0.0377 0.7870 0.7882 0.7249 0.7414 0.7254 0.7413 0.6459 0.6694
0.0482 9.2549 19750 0.0377 0.7863 0.7871 0.7296 0.7442 0.7306 0.7449 0.6498 0.6690
0.0529 9.3721 20000 0.0377 0.7873 0.7888 0.7285 0.7423 0.7290 0.7426 0.6490 0.6690
0.0429 9.4892 20250 0.0378 0.7868 0.7883 0.7286 0.7426 0.7292 0.7431 0.6503 0.6684
0.0534 9.6064 20500 0.0380 0.7861 0.7881 0.7300 0.7443 0.7305 0.7451 0.6446 0.6635
0.0531 9.7235 20750 0.0375 0.7886 0.7894 0.7350 0.7492 0.7356 0.7498 0.6442 0.6634
0.0464 9.8407 21000 0.0380 0.7861 0.7871 0.7314 0.7464 0.7320 0.7468 0.6415 0.6600
0.0406 9.9578 21250 0.0387 0.7824 0.7845 0.7335 0.7460 0.7337 0.7463 0.6362 0.6532

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
153M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CocoRoF/KMB_SimCSE

Finetuned
(1)
this model