Chrisneverdie commited on
Commit
3609118
·
verified ·
1 Parent(s): af2e5bf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md CHANGED
@@ -1,3 +1,104 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ # FirstSportsELM
5
+ ### The first ever Sports Expert Language Model
6
+ Created by Chris Zexin Chen, Sean Xie, and Chengxi Li.
7
+ Email for question: zc2404@nyu.edu
8
+
9
+ ### This model is now on Huggingface Space for you to play around!
10
+ https://huggingface.co/spaces/Chrisneverdie/SportsDPT
11
+
12
+ As avid sports enthusiasts, we’ve consistently observed a gap in the market for a dedicated
13
+ large language model tailored to the sports domain. This research stems from our intrigue
14
+ about the potential of a language model that is exclusively trained and fine-tuned on sports-
15
+ related data. We aim to assess its performance against generic language models, thus delving
16
+ into the unique nuances and demands of the sports industry
17
+
18
+ This model structure is built by Andrej Karpathy: https://github.com/karpathy/nanoGPT
19
+
20
+ Here is an example QA from SportsDPT
21
+ ![5dc29abdc17ced70ca75e2da6aa5a90](https://github.com/chrischenhub/FirstSportsELM/assets/99419764/db5f6287-8d4f-4c43-9843-de70f726d32b)
22
+
23
+ ## Model Checkpoint File
24
+
25
+ https://drive.google.com/drive/folders/1PSYYWdUWiM5t0KTtlpwQ1YXBWRwV1JWi?usp=sharing
26
+
27
+ *put FineTune_ckpt.pt under model folder in finetune/model/ if you wish to proceed with inference*
28
+
29
+ ## Pretrain Data
30
+
31
+ https://drive.google.com/drive/folders/1bZvWxLnmCDYJhgMDaWumr33KbyDKQUki?usp=sharing
32
+ *train.bin ~8.4 Gb/4.5B tokens, val.bin ~4.1 Mb/2M tokens*
33
+
34
+
35
+ ## Pretrain
36
+ To replicate our model, you need to use train.bin and val.bin in this drive, which is processed and ready to train.
37
+ We trained on a 4xA100 40GB node for 30 hrs to get a val loss ~2.36. Once you set up the environment, run the following:
38
+
39
+ ```$ torchrun --standalone --nproc_per_node=4 train.py config/train_gpt2.py```
40
+
41
+ You can tweak around with the parameters in train_gpt2.py. We had two experiments and the first one failed badly.
42
+
43
+ ![image](https://github.com/chrischenhub/FirstSportsELM/assets/99419764/e99ee0bd-b49a-421b-808f-796ea90a3f32)
44
+
45
+ The second trial is a success and the parameters are all stored in pretrain/train_gpt2.py
46
+
47
+ ![image](https://github.com/chrischenhub/FirstSportsELM/assets/99419764/fdd474ef-c11e-4ae9-af58-4c2632bfcd5b)
48
+
49
+
50
+
51
+ ## Fine Tune
52
+
53
+ We used thousands of GPT4-generated Sports QA pairs to finetune our model.
54
+
55
+ 1. Generate Tags, Questions and Respones from GPT-4
56
+
57
+ *python FineTuneDataGeneration.py api_key Numtag NumQuestion NumParaphrase NumAnswer*
58
+
59
+ * api_key: Your Api Key
60
+ * Numtag: number of tags, default 50, optional
61
+ * NumQuestion: number of questions, default 16, optional
62
+ * NumParaphrase: number of question paraphrases, default 1, optional
63
+ * NumAnswer: number of answers, default 2, optional
64
+
65
+ 2. Convert Json to TXT and Bin for fine-tuning
66
+
67
+ *python Json2Bin.py*
68
+
69
+ 3. Fine Tune OmniSportsGPT
70
+
71
+ *python train.py FineTuneConfig.py*
72
+
73
+
74
+ ## Ask Your Question!
75
+
76
+ 1. Inference
77
+
78
+ *python Inference.py YourQuestionHere*
79
+
80
+ *python DefaultAnswer.py*
81
+
82
+ *python RandomGPT2ChatBot.py*
83
+
84
+ 2. Plot Result
85
+
86
+ *python plot.py*
87
+
88
+ ## Benchmark
89
+ Target: Sports DPT
90
+
91
+ Default: GPT2 replica finetuned by sports QA
92
+
93
+ Random: GPT2 size language model finetuned by general QA
94
+
95
+ Llama2: Llama2 7B finetuned by general QA
96
+
97
+ ![Alt text](image-2.png)
98
+
99
+ ![Alt text](image.png)
100
+
101
+ ![Alt text](image-1.png)
102
+
103
+ ## Cost
104
+ The entire pretrain and finetune process costs around 250 USD. ~200$ in GPU rentals and ~50$ in OpenAI API usage.