llama_luganda_LAFT / README.md
ChrisToukmaji's picture
Update README.md
e1302bb verified
metadata
tags:
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - accuracy
model-index:
  - name: luganda_finetuned_model
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: common_voice lg
          type: common_voice
          config: lg
          split: validation
          args: lg
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.292818759159746
language:
  - lg

Paper and Citation

Paper: Few-Shot Cross-Lingual Transfer for Prompting Large Language Models in Low-Resource Languages

@misc{toukmaji2024fewshot,
      title={Few-Shot Cross-Lingual Transfer for Prompting Large Language Models in Low-Resource Languages}, 
      author={Christopher Toukmaji},
      year={2024},
      eprint={2403.06018},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

luganda_finetuned_model

This model is a fine-tuned version of HF_llama on the common_voice lg dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4695
  • Accuracy: 0.2928

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 4
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3.0

Training results

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3