t5-small-finetuned-wikihow_3epoch_b8_lr3e-3
This model is a fine-tuned version of t5-small on the wikihow dataset. It achieves the following results on the evaluation set:
- Loss: 2.3163
- Rouge1: 27.1711
- Rouge2: 10.6296
- Rougel: 23.206
- Rougelsum: 26.4801
- Gen Len: 18.5433
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
3.0734 | 0.25 | 5000 | 2.7884 | 22.4825 | 7.2492 | 19.243 | 21.9167 | 18.0616 |
2.9201 | 0.51 | 10000 | 2.7089 | 24.0869 | 8.0348 | 20.4814 | 23.4541 | 18.5994 |
2.8403 | 0.76 | 15000 | 2.6390 | 24.62 | 8.3776 | 20.8736 | 23.9784 | 18.4676 |
2.7764 | 1.02 | 20000 | 2.5943 | 24.1504 | 8.3933 | 20.8271 | 23.5382 | 18.4078 |
2.6641 | 1.27 | 25000 | 2.5428 | 25.6574 | 9.2371 | 21.8576 | 24.9558 | 18.4249 |
2.6369 | 1.53 | 30000 | 2.5042 | 25.5208 | 9.254 | 21.6673 | 24.8589 | 18.6467 |
2.6 | 1.78 | 35000 | 2.4637 | 26.094 | 9.7003 | 22.3097 | 25.4695 | 18.5065 |
2.5562 | 2.03 | 40000 | 2.4285 | 26.5374 | 9.9222 | 22.5291 | 25.8836 | 18.5553 |
2.4322 | 2.29 | 45000 | 2.3858 | 26.939 | 10.3555 | 23.0211 | 26.2834 | 18.5614 |
2.4106 | 2.54 | 50000 | 2.3537 | 26.7423 | 10.2816 | 22.7986 | 26.083 | 18.5792 |
2.3731 | 2.8 | 55000 | 2.3163 | 27.1711 | 10.6296 | 23.206 | 26.4801 | 18.5433 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.