ga89tiy
Initial model commit
db6ee6a
raw
history blame
11.5 kB
# os.environ["CUDA_VISIBLE_DEVICES"] = "6"
import argparse
import json
from collections import defaultdict
import numpy as np
import pytorch_lightning as pl
import torch
import wandb
from pytorch_lightning.callbacks import ModelCheckpoint
from sklearn.metrics import accuracy_score, classification_report, jaccard_score, roc_auc_score
from torch.nn import BCEWithLogitsLoss
from torch.utils.data import DataLoader
from torchinfo import summary
from tqdm import tqdm
from transformers import AdamW
from findings_classifier.chexpert_dataset import Chexpert_Dataset
from findings_classifier.chexpert_model import ChexpertClassifier
from local_config import WANDB_ENTITY
class ExpandChannels:
"""
Transforms an image with one channel to an image with three channels by copying
pixel intensities of the image along the 1st dimension.
"""
def __call__(self, data: torch.Tensor) -> torch.Tensor:
"""
:param data: Tensor of shape [1, H, W].
:return: Tensor with channel copied three times, shape [3, H, W].
"""
if data.shape[0] != 1:
raise ValueError(f"Expected input of shape [1, H, W], found {data.shape}")
return torch.repeat_interleave(data, 3, dim=0)
class LitIGClassifier(pl.LightningModule):
def __init__(self, num_classes, class_names, class_weights=None, learning_rate=1e-5):
super().__init__()
# Model
self.model = ChexpertClassifier(num_classes)
# Loss with class weights
if class_weights is None:
self.criterion = BCEWithLogitsLoss()
else:
self.criterion = BCEWithLogitsLoss(pos_weight=class_weights)
# Learning rate
self.learning_rate = learning_rate
self.class_names = class_names
def forward(self, x):
return self.model(x)
def step(self, batch, batch_idx):
x, y = batch['image'].to(self.device), batch['labels'].to(self.device)
logits = self(x)
loss = self.criterion(logits, y)
# Apply sigmoid to get probabilities
preds_probs = torch.sigmoid(logits)
# Get predictions as boolean values
preds = preds_probs > 0.5
# calculate jaccard index
jaccard = jaccard_score(y.cpu().numpy(), preds.detach().cpu().numpy(), average='samples')
class_report = classification_report(y.cpu().numpy(), preds.detach().cpu().numpy(), output_dict=True)
# scores = class_report['micro avg']
scores = class_report['macro avg']
metrics_per_label = {label: metrics for label, metrics in class_report.items() if label.isdigit()}
f1 = scores['f1-score']
rec = scores['recall']
prec = scores['precision']
acc = accuracy_score(y.cpu().numpy().flatten(), preds.detach().cpu().numpy().flatten())
try:
auc = roc_auc_score(y.cpu().numpy().flatten(), preds_probs.detach().cpu().numpy().flatten())
except Exception as e:
auc = 0.
return loss, acc, f1, rec, prec, jaccard, auc, metrics_per_label
def training_step(self, batch, batch_idx):
loss, acc, f1, rec, prec, jaccard, auc, _ = self.step(batch, batch_idx)
train_stats = {'loss': loss, 'train_acc': acc, 'train_f1': f1, 'train_rec': rec, 'train_prec': prec, 'train_jaccard': jaccard,
'train_auc': auc}
wandb_run.log(train_stats)
return train_stats
def training_epoch_end(self, outputs):
avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
avg_acc = np.mean([x['train_acc'] for x in outputs])
avg_f1 = np.mean([x['train_f1'] for x in outputs])
avg_rec = np.mean([x['train_rec'] for x in outputs])
avg_prec = np.mean([x['train_prec'] for x in outputs])
avg_jaccard = np.mean([x['train_jaccard'] for x in outputs])
avg_auc = np.mean([x['train_auc'] for x in outputs])
wandb_run.log({'epoch_train_loss': avg_loss, 'epoch_train_acc': avg_acc, 'epoch_train_f1': avg_f1, 'epoch_train_rec': avg_rec,
'epoch_train_prec': avg_prec, 'epoch_train_jaccard': avg_jaccard, 'epoch_train_auc': avg_auc})
def validation_step(self, batch, batch_idx):
loss, acc, f1, rec, prec, jaccard, auc, metrics_per_label = self.step(batch, batch_idx)
# log f1 for checkpoint callback
self.log('val_f1', f1)
return {'val_loss': loss, 'val_acc': acc, 'val_f1': f1, 'val_rec': rec, 'val_prec': prec, 'val_jaccard': jaccard,
'val_auc': auc}, metrics_per_label
def validation_epoch_end(self, outputs):
outputs, per_label_metrics_outputs = zip(*outputs)
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
avg_acc = np.mean([x['val_acc'] for x in outputs])
avg_f1 = np.mean([x['val_f1'] for x in outputs])
avg_rec = np.mean([x['val_rec'] for x in outputs])
avg_prec = np.mean([x['val_prec'] for x in outputs])
avg_jaccard = np.mean([x['val_jaccard'] for x in outputs])
avg_auc = np.mean([x['val_auc'] for x in outputs])
per_label_metrics = defaultdict(lambda: defaultdict(float))
label_counts = defaultdict(int)
for metrics_per_label in per_label_metrics_outputs:
for label, metrics in metrics_per_label.items():
label_name = self.class_names[int(label)]
per_label_metrics[label_name]['precision'] += metrics['precision']
per_label_metrics[label_name]['recall'] += metrics['recall']
per_label_metrics[label_name]['f1-score'] += metrics['f1-score']
per_label_metrics[label_name]['support'] += metrics['support']
label_counts[label_name] += 1
# Average the metrics
for label, metrics in per_label_metrics.items():
for metric_name in ['precision', 'recall', 'f1-score']:
if metrics['support'] > 0:
per_label_metrics[label][metric_name] /= label_counts[label]
val_stats = {'val_loss': avg_loss, 'val_acc': avg_acc, 'val_f1': avg_f1, 'val_rec': avg_rec, 'val_prec': avg_prec, 'val_jaccard': avg_jaccard,
'val_auc': avg_auc}
wandb_run.log(val_stats)
def test_step(self, batch, batch_idx):
loss, acc, f1, rec, prec, jaccard, auc, _ = self.step(batch, batch_idx)
return {'test_loss': loss, 'test_acc': acc, 'test_f1': f1, 'test_rec': rec, 'test_prec': prec, 'test_jaccard': jaccard, 'test_auc': auc}
def test_epoch_end(self, outputs):
avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean()
avg_acc = np.mean([x['test_acc'] for x in outputs])
avg_f1 = np.mean([x['test_f1'] for x in outputs])
avg_rec = np.mean([x['test_rec'] for x in outputs])
avg_prec = np.mean([x['test_prec'] for x in outputs])
avg_jaccard = np.mean([x['test_jaccard'] for x in outputs])
avg_auc = np.mean([x['test_auc'] for x in outputs])
test_stats = {'test_loss': avg_loss, 'test_acc': avg_acc, 'test_f1': avg_f1, 'test_rec': avg_rec, 'test_prec': avg_prec,
'test_jaccard': avg_jaccard, 'test_auc': avg_auc}
wandb_run.log(test_stats)
def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=self.learning_rate)
return optimizer
def save_preds(dataloader, split):
# load checkpoint
ckpt_path = f"findings_classifier/checkpoints/chexpert_train/ChexpertClassifier-epoch=06-val_f1=0.36.ckpt"
model = LitIGClassifier.load_from_checkpoint(ckpt_path, num_classes=num_classes, class_weights=val_dataset.get_class_weights(),
class_names=class_names, learning_rate=args.lr)
model.eval()
model.cuda()
model.half()
class_names_np = np.asarray(class_names)
# get predictions for all study ids
structured_preds = {}
for batch in tqdm(dataloader):
dicom_ids = batch['dicom_id']
logits = model(batch['image'].half().cuda())
preds_probs = torch.sigmoid(logits)
preds = preds_probs > 0.5
# iterate over each study id in the batch
for i, (dicom_id, pred) in enumerate(zip(dicom_ids, preds.detach().cpu())):
# get all positive labels
findings = class_names_np[pred].tolist()
structured_preds[dicom_id] = findings
# save predictions
with open(f"findings_classifier/predictions/structured_preds_chexpert_log_weighting_macro_{split}.json", "w") as f:
json.dump(structured_preds, f, indent=4)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--run_name", type=str, default="debug")
parser.add_argument("--lr", type=float, default=5e-5)
parser.add_argument("--epochs", type=int, default=6)
parser.add_argument("--loss_weighting", type=str, default="log", choices=["lin", "log", "none"])
parser.add_argument("--truncate", type=int, default=None)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--num_workers", type=int, default=12)
parser.add_argument("--use_augs", action="store_true", default=False)
parser.add_argument("--train", action="store_true", default=False)
args = parser.parse_args()
TRAIN = args.train
# fix all seeds
pl.seed_everything(42, workers=True)
# Create DataLoaders
train_dataset = Chexpert_Dataset(split='train', truncate=args.truncate, loss_weighting=args.loss_weighting, use_augs=args.use_augs)
val_dataset = Chexpert_Dataset(split='validate', truncate=args.truncate)
test_dataset = Chexpert_Dataset(split='test')
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
# Number of classes for IGClassifier
num_classes = len(train_dataset.chexpert_cols)
class_names = train_dataset.chexpert_cols
if TRAIN:
class_weights = torch.tensor(train_dataset.get_class_weights(), dtype=torch.float32)
# Define the model
lit_model = LitIGClassifier(num_classes, class_weights, class_names, learning_rate=args.lr)
print(summary(lit_model))
# WandB logger
wandb_run = wandb.init(
project="ChexpertClassifier",
entity= WANDB_ENTITY,
name=args.run_name
)
# checkpoint callback
checkpoint_callback = ModelCheckpoint(
monitor='val_f1',
dirpath=f'findings_classifier/checkpoints/{args.run_name}',
filename='ChexpertClassifier-{epoch:02d}-{val_f1:.2f}',
save_top_k=1,
save_last=True,
mode='max',
)
# Train the model
trainer = pl.Trainer(max_epochs=args.epochs, gpus=1, callbacks=[checkpoint_callback], benchmark=False, deterministic=True, precision=16)
trainer.fit(lit_model, train_dataloader, val_dataloader)
# Test the model
# trainer.validate(lit_model, val_dataloader, ckpt_path="checkpoints_IGCLassifier/lr_5e-5_to0_log_weighting_patches_augs_imgemb/IGClassifier-epoch=09-val_f1=0.65.ckpt")
else:
save_preds(train_dataloader, "train")
save_preds(val_dataloader, "val")
save_preds(test_dataloader, "test")