|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import warnings |
|
import shutil |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig |
|
import torch |
|
|
|
from LLAVA_Biovil.biovil_t.model import ImageModel |
|
from LLAVA_Biovil.biovil_t.pretrained import _download_biovil_t_image_model_weights |
|
from LLAVA_Biovil.biovil_t.types import ImageEncoderType |
|
from LLAVA_Biovil.llava.model.multimodal_projector.builder import build_vision_projector |
|
|
|
try: |
|
from LLAVA_Biovil.llava.model import * |
|
from LLAVA_Biovil.llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
except: |
|
from LLAVA_Biovil.llava.model import * |
|
from LLAVA_Biovil.llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
|
|
|
|
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", **kwargs): |
|
print("Model base: ", model_base) |
|
kwargs = {"device_map": device_map, **kwargs} |
|
|
|
if device != "cuda": |
|
kwargs['device_map'] = {"": device} |
|
|
|
if load_8bit: |
|
kwargs['load_in_8bit'] = True |
|
elif load_4bit: |
|
kwargs['load_in_4bit'] = True |
|
kwargs['quantization_config'] = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4' |
|
) |
|
else: |
|
|
|
kwargs['torch_dtype'] = torch.bfloat16 |
|
|
|
if 'llava' in model_name.lower(): |
|
|
|
if 'lora' in model_name.lower() and model_base is None: |
|
warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') |
|
if 'lora' in model_name.lower() and model_base is not None: |
|
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
if 'LLaVAMed' in model_base: |
|
lora_cfg_pretrained.mm_projector_type = 'linear' |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
print('Loading LLaVA from base model...') |
|
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) |
|
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features |
|
if model.lm_head.weight.shape[0] != token_num: |
|
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) |
|
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) |
|
|
|
if model.config.mm_vision_tower == 'biovil': |
|
|
|
model.model.mm_projector = build_vision_projector(model.config) |
|
model.model.mm_projector.to(device=model.device, dtype=model.dtype) |
|
|
|
print('Loading additional LLaVA weights...') |
|
if os.path.exists(os.path.join(model_path, 'non_lora_trainables_extended.bin')): |
|
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables_extended.bin'), map_location='cpu') |
|
non_lora_trainables = {(k[7:] if k.startswith('module.') else k): v for k, v in non_lora_trainables.items()} |
|
elif os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): |
|
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') |
|
else: |
|
|
|
from huggingface_hub import hf_hub_download |
|
def load_from_hf(repo_id, filename, subfolder=None): |
|
cache_file = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder) |
|
return torch.load(cache_file, map_location='cpu') |
|
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') |
|
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} |
|
if any(k.startswith('model.model.') for k in non_lora_trainables): |
|
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} |
|
model.load_state_dict(non_lora_trainables, strict=False) |
|
|
|
from peft import PeftModel |
|
print('Loading LoRA weights...') |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print('Merging LoRA weights...') |
|
model = model.merge_and_unload() |
|
print('Model is loaded...') |
|
elif model_base is not None: |
|
|
|
print('Loading LLaVA from base model...') |
|
if 'mpt' in model_name.lower(): |
|
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): |
|
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py')) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) |
|
model = LlavaMPTForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) |
|
|
|
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') |
|
mm_projector_weights = {k: v.to(torch.bfloat16) for k, v in mm_projector_weights.items()} |
|
model.load_state_dict(mm_projector_weights, strict=False) |
|
else: |
|
if 'mpt' in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) |
|
model = LlavaMPTForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
else: |
|
|
|
if model_base is not None: |
|
|
|
from peft import PeftModel |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) |
|
print(f"Loading LoRA weights from {model_path}") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print(f"Merging weights") |
|
model = model.merge_and_unload() |
|
print('Convert to FP16...') |
|
model.to(torch.bfloat16) |
|
else: |
|
use_fast = False |
|
if 'mpt' in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
|
|
image_processor = None |
|
|
|
if 'llava' in model_name.lower(): |
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) |
|
if mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
if model.config.mm_vision_tower == 'biovil': |
|
biovilt_checkpoint_path = _download_biovil_t_image_model_weights() |
|
model_type = ImageEncoderType.RESNET50_MULTI_IMAGE |
|
vision_tower = ImageModel(img_encoder_type=model_type, |
|
joint_feature_size=128, |
|
pretrained_model_path=biovilt_checkpoint_path) |
|
model.model.vision_tower = vision_tower |
|
else: |
|
vision_tower = model.get_vision_tower() |
|
if not vision_tower.is_loaded: |
|
vision_tower.load_model() |
|
vision_tower.to(device=device, dtype=torch.bfloat16) |
|
image_processor = vision_tower.image_processor |
|
|
|
if non_lora_trainables is not None and any(k.startswith('model.vision_tower.') for k in non_lora_trainables): |
|
new_vision_tower_state_dict = {} |
|
for k, v in non_lora_trainables.items(): |
|
if 'model.vision_tower.vision_tower.' in k: |
|
new_k = k.replace('model.vision_tower.', '') |
|
new_vision_tower_state_dict[new_k] = v |
|
elif 'model.vision_tower' in k: |
|
new_k = k.replace('model.vision_tower.', '') |
|
new_vision_tower_state_dict[new_k] = v |
|
print('Loaded additional vision tower weights...') |
|
vision_tower.load_state_dict(new_vision_tower_state_dict, strict=False) |
|
|
|
|
|
image_pooler = model.get_image_pooler() |
|
if image_pooler is not None: |
|
image_pooler.to(device=device, dtype=torch.float16) |
|
if non_lora_trainables is not None and any(k.startswith('model.image_pooler.') for k in non_lora_trainables): |
|
new_image_pooler_state_dict = {} |
|
for k, v in non_lora_trainables.items(): |
|
if 'model.image_pooler.' in k: |
|
new_k = k.replace('model.image_pooler.', '') |
|
new_image_pooler_state_dict[new_k] = v |
|
print('Loading additional image pooler weights...') |
|
image_pooler.load_state_dict(new_image_pooler_state_dict, strict=True) |
|
|
|
if hasattr(model.config, "max_sequence_length"): |
|
context_len = model.config.max_sequence_length |
|
else: |
|
context_len = 2048 |
|
|
|
return tokenizer, model, image_processor, context_len |
|
|