|
--- |
|
base_model: mistralai/Mistral-Nemo-Instruct-2407 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
license: apache-2.0 |
|
model_creator: Mistral AI |
|
model_name: Mistral-Nemo-Instruct-2407 |
|
model_type: mistral |
|
quantized_by: CISC |
|
--- |
|
|
|
# Mistral-Nemo-Instruct-2407 - SOTA GGUF |
|
- Model creator: [Mistral AI](https://huggingface.co/mistralai) |
|
- Original model: [Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) |
|
|
|
<!-- description start --> |
|
## Description |
|
|
|
This repo contains State Of The Art quantized GGUF format model files for [Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407). |
|
|
|
Quantization was done with an importance matrix that was trained for ~1M tokens (256 batches of 4096 tokens) of [groups_merged-enhancedV3.txt](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384) and [wiki.train.raw](https://raw.githubusercontent.com/pytorch/examples/main/word_language_model/data/wikitext-2/train.txt) concatenated. |
|
|
|
The embedded chat template is the updated one with correct Tekken tokenization and function calling support via OpenAI-compatible `tools` parameter, see [example](#simple-llama-cpp-python-example-function-calling-code). |
|
|
|
<!-- description end --> |
|
|
|
|
|
<!-- prompt-template start --> |
|
## Prompt template: Mistral Tekken |
|
|
|
``` |
|
[AVAILABLE_TOOLS][{"name": "function_name", "description": "Description", "parameters": {...}}, ...][/AVAILABLE_TOOLS][INST]{prompt}[/INST] |
|
``` |
|
|
|
<!-- prompt-template end --> |
|
|
|
|
|
<!-- compatibility_gguf start --> |
|
## Compatibility |
|
|
|
These quantised GGUFv3 files are compatible with llama.cpp from July 22nd 2024 onwards, as of commit [50e0535](https://github.com/ggerganov/llama.cpp/commit/50e05353e88d50b644688caa91f5955e8bdb9eb9) |
|
|
|
They are also compatible with many third party UIs and libraries provided they are built using a recent llama.cpp. |
|
|
|
## Explanation of quantisation methods |
|
|
|
<details> |
|
<summary>Click to see details</summary> |
|
|
|
The new methods available are: |
|
|
|
* GGML_TYPE_IQ1_S - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.56 bits per weight (bpw) |
|
* GGML_TYPE_IQ1_M - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.75 bpw |
|
* GGML_TYPE_IQ2_XXS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.06 bpw |
|
* GGML_TYPE_IQ2_XS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.31 bpw |
|
* GGML_TYPE_IQ2_S - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.5 bpw |
|
* GGML_TYPE_IQ2_M - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.7 bpw |
|
* GGML_TYPE_IQ3_XXS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.06 bpw |
|
* GGML_TYPE_IQ3_XS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.3 bpw |
|
* GGML_TYPE_IQ3_S - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.44 bpw |
|
* GGML_TYPE_IQ3_M - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.66 bpw |
|
* GGML_TYPE_IQ4_XS - 4-bit quantization in super-blocks with an importance matrix applied, effectively using 4.25 bpw |
|
* GGML_TYPE_IQ4_NL - 4-bit non-linearly mapped quantization with an importance matrix applied, effectively using 4.5 bpw |
|
|
|
Refer to the Provided Files table below to see what files use which methods, and how. |
|
</details> |
|
<!-- compatibility_gguf end --> |
|
|
|
<!-- README_GGUF.md-provided-files start --> |
|
## Provided files |
|
|
|
| Name | Quant method | Bits | Size | Max RAM required | Use case | |
|
| ---- | ---- | ---- | ---- | ---- | ----- | |
|
| [Mistral-Nemo-Instruct-2407.IQ1_S.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ1_S.gguf) | IQ1_S | 1 | 2.8 GB| 3.4 GB | smallest, significant quality loss | |
|
| [Mistral-Nemo-Instruct-2407.IQ1_M.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ1_M.gguf) | IQ1_M | 1 | 3.0 GB| 3.6 GB | very small, significant quality loss | |
|
| [Mistral-Nemo-Instruct-2407.IQ2_XXS.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ2_XXS.gguf) | IQ2_XXS | 2 | 3.3 GB| 3.9 GB | very small, high quality loss | |
|
| [Mistral-Nemo-Instruct-2407.IQ2_XS.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ2_XS.gguf) | IQ2_XS | 2 | 3.6 GB| 4.2 GB | very small, high quality loss | |
|
| [Mistral-Nemo-Instruct-2407.IQ2_S.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ2_S.gguf) | IQ2_S | 2 | 3.9 GB| 4.4 GB | small, substantial quality loss | |
|
| [Mistral-Nemo-Instruct-2407.IQ2_M.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ2_M.gguf) | IQ2_M | 2 | 4.1 GB| 4.7 GB | small, greater quality loss | |
|
| [Mistral-Nemo-Instruct-2407.IQ3_XXS.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ3_XXS.gguf) | IQ3_XXS | 3 | 4.6 GB| 5.2 GB | very small, high quality loss | |
|
| [Mistral-Nemo-Instruct-2407.IQ3_XS.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ3_XS.gguf) | IQ3_XS | 3 | 4.9 GB| 5.5 GB | small, substantial quality loss | |
|
| [Mistral-Nemo-Instruct-2407.IQ3_S.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ3_S.gguf) | IQ3_S | 3 | 5.2 GB| 5.8 GB | small, greater quality loss | |
|
| [Mistral-Nemo-Instruct-2407.IQ3_M.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ3_M.gguf) | IQ3_M | 3 | 5.3 GB| 5.9 GB | medium, balanced quality - recommended | |
|
| [Mistral-Nemo-Instruct-2407.IQ4_XS.gguf](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.IQ4_XS.gguf) | IQ4_XS | 4 | 6.3 GB| 6.9 GB | small, substantial quality loss | |
|
|
|
Generated importance matrix file: [Mistral-Nemo-Instruct-2407.imatrix.dat](https://huggingface.co/CISCai/Mistral-Nemo-Instruct-2407-SOTA-GGUF/blob/main/Mistral-Nemo-Instruct-2407.imatrix.dat) |
|
|
|
**Note**: the above RAM figures assume no GPU offloading with 4K context. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. |
|
|
|
<!-- README_GGUF.md-provided-files end --> |
|
|
|
<!-- README_GGUF.md-how-to-run start --> |
|
## Example `llama.cpp` command |
|
|
|
Make sure you are using `llama.cpp` from commit [50e0535](https://github.com/ggerganov/llama.cpp/commit/50e05353e88d50b644688caa91f5955e8bdb9eb9) or later. |
|
|
|
```shell |
|
./llama-cli -ngl 41 -m Mistral-Nemo-Instruct-2407.IQ4_XS.gguf --color -c 131072 --temp 0.3 --repeat-penalty 1.1 -p "[AVAILABLE_TOOLS]{tools}[/AVAILABLE_TOOLS][INST]{prompt}[/INST]" |
|
``` |
|
|
|
This model is very temperature sensitive, keep it between 0.3 and 0.4 for best results! Also note the lack of spaces between special tokens and input in the prompt; this model is not using the regular Mistral chat template. |
|
|
|
Change `-ngl 41` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. |
|
|
|
Change `-c 131072` to the desired sequence length. |
|
|
|
If you are low on V/RAM try quantizing the K-cache with `-ctk q8_0` or even `-ctk q4_0` for big memory savings (depending on context size). |
|
There is a similar option for V-cache (`-ctv`), however that is [not working yet](https://github.com/ggerganov/llama.cpp/issues/4425) unless you enable Flash Attention (`-fa`) too. |
|
|
|
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) |
|
|
|
## How to run from Python code |
|
|
|
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) module. |
|
|
|
### How to load this model in Python code, using llama-cpp-python |
|
|
|
For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/). |
|
|
|
#### First install the package |
|
|
|
Run one of the following commands, according to your system: |
|
|
|
```shell |
|
# Prebuilt wheel with basic CPU support |
|
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu |
|
# Prebuilt wheel with NVidia CUDA acceleration |
|
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 (or cu122 etc.) |
|
# Prebuilt wheel with Metal GPU acceleration |
|
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal |
|
# Build base version with no GPU acceleration |
|
pip install llama-cpp-python |
|
# With NVidia CUDA acceleration |
|
CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python |
|
# Or with OpenBLAS acceleration |
|
CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python |
|
# Or with AMD ROCm GPU acceleration (Linux only) |
|
CMAKE_ARGS="-DGGML_HIPBLAS=on" pip install llama-cpp-python |
|
# Or with Metal GPU acceleration for macOS systems only |
|
CMAKE_ARGS="-DGGML_METAL=on" pip install llama-cpp-python |
|
# Or with Vulkan acceleration |
|
CMAKE_ARGS="-DGGML_VULKAN=on" pip install llama-cpp-python |
|
# Or with SYCL acceleration |
|
CMAKE_ARGS="-DGGML_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python |
|
|
|
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: |
|
$env:CMAKE_ARGS = "-DGGML_CUDA=on" |
|
pip install llama-cpp-python |
|
``` |
|
|
|
#### Simple llama-cpp-python example code |
|
|
|
```python |
|
from llama_cpp import Llama |
|
|
|
# Chat Completion API |
|
|
|
llm = Llama(model_path="./Mistral-Nemo-Instruct-2407.IQ4_XS.gguf", n_gpu_layers=41, n_ctx=131072) |
|
print(llm.create_chat_completion( |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": "Pick a LeetCode challenge and solve it in Python." |
|
} |
|
] |
|
)) |
|
``` |
|
|
|
#### Simple llama-cpp-python example function calling code |
|
|
|
```python |
|
from llama_cpp import Llama |
|
|
|
# Chat Completion API |
|
|
|
grammar = LlamaGrammar.from_json_schema(json.dumps({ |
|
"type": "array", |
|
"items": { |
|
"type": "object", |
|
"required": [ "name", "arguments" ], |
|
"properties": { |
|
"name": { |
|
"type": "string" |
|
}, |
|
"arguments": { |
|
"type": "object" |
|
} |
|
} |
|
} |
|
})) |
|
|
|
llm = Llama(model_path="./Mistral-Nemo-Instruct-2407.IQ4_XS.gguf", n_gpu_layers=41, n_ctx=131072) |
|
response = llm.create_chat_completion( |
|
temperature = 0.0, |
|
repeat_penalty = 1.1, |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": "What's the weather like in Oslo and Stockholm?" |
|
} |
|
], |
|
tools=[{ |
|
"type": "function", |
|
"function": { |
|
"name": "get_current_weather", |
|
"description": "Get the current weather in a given location", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"location": { |
|
"type": "string", |
|
"description": "The city and state, e.g. San Francisco, CA" |
|
}, |
|
"unit": { |
|
"type": "string", |
|
"enum": [ "celsius", "fahrenheit" ] |
|
} |
|
}, |
|
"required": [ "location" ] |
|
} |
|
} |
|
}], |
|
grammar = grammar |
|
) |
|
print(json.loads(response["choices"][0]["text"])) |
|
|
|
print(llm.create_chat_completion( |
|
temperature = 0.0, |
|
repeat_penalty = 1.1, |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": "What's the weather like in Oslo?" |
|
}, |
|
{ # The tool_calls is from the response to the above with tool_choice active |
|
"role": "assistant", |
|
"content": None, |
|
"tool_calls": [ |
|
{ |
|
"id": "call__0_get_current_weather_cmpl-..."[:9], # Make sure to truncate ID (chat template requires it) |
|
"type": "function", |
|
"function": { |
|
"name": "get_current_weather", |
|
"arguments": '{ "location": "Oslo, NO" ,"unit": "celsius"} ' |
|
} |
|
} |
|
] |
|
}, |
|
{ # The tool_call_id is from tool_calls and content is the result from the function call you made |
|
"role": "tool", |
|
"content": "20", |
|
"tool_call_id": "call__0_get_current_weather_cmpl-..."[:9] # Make sure to truncate ID (chat template requires it) |
|
} |
|
], |
|
tools=[{ |
|
"type": "function", |
|
"function": { |
|
"name": "get_current_weather", |
|
"description": "Get the current weather in a given location", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"location": { |
|
"type": "string", |
|
"description": "The city and state, e.g. San Francisco, CA" |
|
}, |
|
"unit": { |
|
"type": "string", |
|
"enum": [ "celsius", "fahrenheit" ] |
|
} |
|
}, |
|
"required": [ "location" ] |
|
} |
|
} |
|
}], |
|
#tool_choice={ |
|
# "type": "function", |
|
# "function": { |
|
# "name": "get_current_weather" |
|
# } |
|
#} |
|
)) |
|
``` |
|
|
|
<!-- README_GGUF.md-how-to-run end --> |
|
|