holylovenia's picture
Update README.md
51ba464
---
language:
- yue
datasets:
- common_voice
metrics:
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Wav2Vec2-Large-XLSR-53-Cantonese
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice zh-HK
type: common_voice
args: zh-HK
metrics:
- name: Test CER
type: cer
value: [18.55%]
---
# Wav2Vec2-Large-XLSR-53-Cantonese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Cantonese using the [Common Voice Corpus 8.0](https://commonvoice.mozilla.org/en/datasets).
When using this model, make sure that your speech input is sampled at 16kHz.
The Common Voice's validated `train` and `dev` were used for training.
The script used for training can be found at [https://github.com/holylovenia/wav2vec2-pretraining](https://github.com/holylovenia/wav2vec2-pretraining).
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "zh-HK", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese")
model = Wav2Vec2ForCTC.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese")
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
```
## Evaluation
The model can be evaluated as follows on the zh-HK test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "zh-HK", split="test")
wer = load_metric("cer")
processor = Wav2Vec2Processor.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese")
model = Wav2Vec2ForCTC.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]'
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: CER: 18.55 %
## Citation
If you use our code/model, please cite us:
```
@inproceedings{lovenia2022ascend,
title={ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
author={Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
booktitle={Proceedings of the 13th Language Resources and Evaluation Conference (LREC)},
year={2022}
}
```