--- language: - yue datasets: - common_voice metrics: - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2-Large-XLSR-53-Cantonese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice zh-HK type: common_voice args: zh-HK metrics: - name: Test CER type: cer value: [18.55%] --- # Wav2Vec2-Large-XLSR-53-Cantonese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Cantonese using the [Common Voice Corpus 8.0](https://commonvoice.mozilla.org/en/datasets). When using this model, make sure that your speech input is sampled at 16kHz. The Common Voice's validated `train` and `dev` were used for training. The script used for training can be found at [https://github.com/holylovenia/wav2vec2-pretraining](https://github.com/holylovenia/wav2vec2-pretraining). ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "zh-HK", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") model = Wav2Vec2ForCTC.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the zh-HK test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "zh-HK", split="test") wer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") model = Wav2Vec2ForCTC.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: CER: 18.55 % ## Citation If you use our code/model, please cite us: ``` @inproceedings{lovenia2022ascend, title={ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation}, author={Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others}, booktitle={Proceedings of the 13th Language Resources and Evaluation Conference (LREC)}, year={2022} } ```