File size: 1,728 Bytes
f0e5903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: camembert-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: camembert-base-frenchNER_4entities
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# camembert-base-frenchNER_4entities

This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0542
- Precision: 0.9844
- Recall: 0.9844
- F1: 0.9844
- Accuracy: 0.9844

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0407        | 1.0   | 41095  | 0.0547          | 0.9816    | 0.9816 | 0.9816 | 0.9816   |
| 0.0242        | 2.0   | 82190  | 0.0488          | 0.9843    | 0.9843 | 0.9843 | 0.9843   |
| 0.018         | 3.0   | 123285 | 0.0542          | 0.9844    | 0.9844 | 0.9844 | 0.9844   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.0