File size: 15,111 Bytes
f225bf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import math
import torch
import torch.nn as nn
from einops import rearrange, repeat
from flash_attn.layers.rotary import apply_rotary_emb_qkv_, apply_rotary_emb_func, apply_rotary_emb_kv_
class RelativePositionalEncoding(nn.Module):
def __init__(self, relative_attention_num_buckets, relative_attention_max_distance, n_heads, max_sequence_length, bidirectional=True, randomized_position=False):
super().__init__()
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.n_heads = n_heads
self.max_sequence_length = max_sequence_length
self.bidirectional = bidirectional
self.randomized_position = randomized_position
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
if self.randomized_position:
context_position = torch.arange(self.max_sequence_length, dtype=torch.long, device=device)
context_indices_rand, _ = torch.sort(torch.randperm(self.max_sequence_length)[:query_length])
context_indices_rand[0] = 0 # root the first element of the sequence
context_position = context_position[context_indices_rand][:, None]
memory_position = torch.arange(self.max_sequence_length, dtype=torch.long, device=device)
memory_indices_rand, _ = torch.sort(torch.randperm(self.max_sequence_length)[:key_length])
memory_indices_rand[0] = 0 # root the first element of the sequence
memory_position = memory_position[memory_indices_rand][None, :]
else:
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=self.bidirectional,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(self, q, k=None, v=None):
query_length = q.shape[1]
key_length = k.shape[1] if k is not None else query_length
bias = self.compute_bias(query_length, key_length, device=q.device).contiguous().to(q.dtype)
return q, k, v, bias
class ALiBiPositionalEncoding(nn.Module):
def __init__(self, max_sequence_length, num_heads, mode='symetric', randomized_position=False):
super().__init__()
self.max_sequence_length = max_sequence_length
self.num_heads = num_heads
self.mode = mode
self.randomized_position = randomized_position
self.alibi_bias = self.build_alibi_bias_matrix(num_heads, max_sequence_length, mode)
@staticmethod
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
def get_slopes(self, n):
def get_slopes_power_of_2(n):
start = (2**(-2**-(math.log2(n)-3)))
ratio = start
return [start*ratio**i for i in range(n)]
if math.log2(n).is_integer():
return get_slopes_power_of_2(n) #In the paper, we only train models that have 2^a heads for some a. This function has
else: #some good properties that only occur when the input is a power of 2. To maintain that even
closest_power_of_2 = 2**math.floor(math.log2(n)) #when the number of heads is not a power of 2, we use this workaround.
return get_slopes_power_of_2(closest_power_of_2) + self.get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2]
def build_symetric_alibi_bias_matrix(self, num_heads, maxpos):
context_position = torch.arange(maxpos)[:, None]
memory_position = torch.arange(maxpos)[None, :]
relative_position = memory_position - context_position
relative_position = torch.abs(relative_position).unsqueeze(0).expand(num_heads, -1,-1)
slopes = torch.Tensor(self.get_slopes(num_heads)) * -1
alibi = slopes.unsqueeze(1).unsqueeze(1) * relative_position
return alibi.view(1, num_heads, maxpos, maxpos)
def build_asymetric_alibi_bias_matrix(self, num_heads, maxpos):
_future_mask_right = torch.triu(self.fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1).unsqueeze(0).repeat(num_heads // 2, 1, 1)
_future_mask_left = torch.tril(self.fill_with_neg_inf(torch.zeros([maxpos, maxpos])), -1).unsqueeze(0).repeat(num_heads // 2, 1, 1)
nonsym_mask = torch.cat((_future_mask_right, _future_mask_left), dim = 0).unsqueeze(0)
slopes = torch.Tensor(self.get_slopes(num_heads // 2)) * -1
context_position = torch.arange(maxpos)[:, None]
memory_position = torch.arange(maxpos)[None, :]
relative_position = memory_position - context_position
relative_position = torch.abs(relative_position).unsqueeze(0).expand(num_heads // 2, -1,-1)
alibi = slopes.unsqueeze(1).unsqueeze(1) * relative_position
alibi = alibi.view(1, num_heads // 2, maxpos, maxpos)
alibi = alibi.repeat(1, 2, 1, 1)
return alibi.view(1, num_heads, maxpos, maxpos) + nonsym_mask.view(1, num_heads, maxpos, maxpos)
def build_alibi_bias_matrix(self, num_heads, maxpos, mode='symetric'):
if mode == 'symetric':
return self.build_symetric_alibi_bias_matrix(num_heads, maxpos)
elif mode == 'asymetric':
return self.build_asymetric_alibi_bias_matrix(num_heads, maxpos)
else:
raise ValueError("ALiBi mode " + mode + " is not implemented.")
def forward(self, q, k=None, v=None):
query_length = q.shape[1]
key_length = k.shape[1] if k is not None else query_length
assert (self.alibi_bias.shape[1] < query_length) & (self.alibi_bias.shape[1] < key_length), "Sequence length larger than allowed alibi bound"
if self.randomized_position:
query_indices_rand, _ = torch.sort(torch.randperm(self.max_sequence_length)[:query_length])
key_indices_rand, _ = torch.sort(torch.randperm(self.max_sequence_length)[:key_length])
# ground sequences
query_indices_rand[0] = 0
key_indices_rand[0] = 0
bias = self.alibi_bias[:, :, query_indices_rand, key_indices_rand].to(q.device)
else:
bias = self.alibi_bias[:, :, :query_length, :key_length].to(q.device)
return q, k, v, bias.to(q.dtype).contiguous()
class RotaryPositionalEncoding(nn.Module):
def __init__(self, dim,
max_sequence_length,
base=10000.0,
interleaved=False,
scale_base=None,
randomized_position=False):
super().__init__()
self.max_sequence_length = max_sequence_length
self.randomized_position = randomized_position
self.dim = dim
self.base = base
self.interleaved = interleaved
self.scale_base = scale_base
inv_freq = self._compute_inv_freq()
self.register_buffer("inv_freq", inv_freq, persistent=False)
scale = (
(torch.arange(0, dim, 2, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
if scale_base is not None
else None
)
self.register_buffer("scale", scale, persistent=False)
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
def _compute_inv_freq(self, device=None):
return 1.0 / (
self.base
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
)
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
# Reset the tables if the sequence length has changed,
# if we're on a new device (possibly due to tracing for instance),
# or if we're switching from inference mode to training
if (
self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
inv_freq = self._compute_inv_freq(device=device)
# Don't do einsum, it converts fp32 to fp16 under AMP
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
t = torch.arange(seqlen, device=device, dtype=dtype)
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
self._cos_k_cached = None
self._sin_k_cached = None
else:
power = (
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(self, q, k=None, v=None):
if self._cos_cached is None:
self._update_cos_sin_cache(self.max_sequence_length, device=q.device, dtype=q.dtype)
if k is None and v is None:
q = apply_rotary_emb_qkv_(
q,
self._cos_cached,
self._sin_cached,
self._cos_k_cached,
self._sin_k_cached,
interleaved=self.interleaved,
seqlen_offsets=0
)
elif v is None and k is not None:
q = apply_rotary_emb_func(
q,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
inplace=True,
seqlen_offsets=0
)
k = apply_rotary_emb_kv_(
k,
self._cos_cached if self._cos_k_cached is None else self._cos_k_cached,
self._sin_cached if self._sin_k_cached is None else self._sin_k_cached,
interleaved=self.interleaved,
seqlen_offsets=0,
)
else:
q = apply_rotary_emb_func(
q,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
inplace=True,
seqlen_offsets=0
)
k = apply_rotary_emb_func(
k,
self._cos_cached if self._cos_k_cached is None else self._cos_k_cached,
self._sin_cached if self._sin_k_cached is None else self._sin_k_cached,
interleaved=self.interleaved,
seqlen_offsets=0,
)
v = apply_rotary_emb_func(
v,
self._cos_cached if self._cos_k_cached is None else self._cos_k_cached,
self._sin_cached if self._sin_k_cached is None else self._sin_k_cached,
interleaved=self.interleaved,
seqlen_offsets=0,
)
return q, k, v, None
|