bourdoiscatie
commited on
Upload 10 files
Browse files- attn_ref.py +29 -0
- configuration_flash_t5.py +3 -9
- cross_entropy_loss.py +277 -0
- custom_heads_flash_t5.py +312 -0
- fa2_compilable.py +642 -0
- flash_attention_v2_bias.py +859 -0
- gated_mlp.py +729 -0
- modeling_flash_t5.py +839 -0
- positional_encoding.py +337 -0
- rms_norm.py +227 -0
attn_ref.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
def attn_ref(q, k, v, b, sm_scale, dropout_p=0.0, causal=False, upcast=False):
|
4 |
+
if upcast:
|
5 |
+
q, k, v = q.float(), k.float(), v.float()
|
6 |
+
if b is not None:
|
7 |
+
b = b.float()
|
8 |
+
|
9 |
+
if b is not None:
|
10 |
+
if (b.shape[0] != q.shape[0]) or (b.shape[1] != q.shape[1]):
|
11 |
+
b = b.expand(q.shape[0], q.shape[1], q.shape[2], k.shape[2])
|
12 |
+
|
13 |
+
ms = torch.arange(q.shape[2], device=q.device).unsqueeze(-1)
|
14 |
+
ns = torch.arange(k.shape[2], device=q.device)
|
15 |
+
|
16 |
+
p = torch.matmul(q, k.transpose(2, 3))
|
17 |
+
p *= sm_scale
|
18 |
+
if b is not None:
|
19 |
+
p += b
|
20 |
+
|
21 |
+
if causal:
|
22 |
+
p = torch.where(ms + k.shape[2] - q.shape[2] >= ns, p, float("-inf"))
|
23 |
+
|
24 |
+
p = torch.softmax(p.float(), dim=-1).to(q.dtype)
|
25 |
+
if dropout_p > 0.0:
|
26 |
+
p = torch.dropout(p, dropout_p, train=True)
|
27 |
+
|
28 |
+
ref_out = torch.matmul(p, v)
|
29 |
+
return ref_out
|
configuration_flash_t5.py
CHANGED
@@ -6,7 +6,7 @@ import logging
|
|
6 |
from transformers import T5Config
|
7 |
|
8 |
AUTO_MAP = {
|
9 |
-
"AutoModel": "modeling_flash_t5.
|
10 |
"AutoModelForSeq2SeqLM": "modeling_flash_t5.FlashT5ForConditionalGeneration",
|
11 |
"AutoModelForTokenClassification": "custom_heads_flash_t5.FlashT5ForTokenClassification",
|
12 |
"AutoModelForQuestionAnswering": "custom_heads_flash_t5.FlashT5ForQuestionAnswering",
|
@@ -26,7 +26,7 @@ class FlashT5Config(T5Config):
|
|
26 |
use_randomized_position_encoding=False,
|
27 |
label_smoothing=0.0,
|
28 |
z_loss=None,
|
29 |
-
|
30 |
max_sequence_length=1024,
|
31 |
attention_dropout_rate=0.0,
|
32 |
alibi_mode="symetric",
|
@@ -39,9 +39,6 @@ class FlashT5Config(T5Config):
|
|
39 |
rotary_base=10000,
|
40 |
rotary_interleaved=False,
|
41 |
rotary_scale_base=None,
|
42 |
-
fire_mlp_width=32,
|
43 |
-
use_masking=False,
|
44 |
-
attention_scale=None,
|
45 |
**kwargs,
|
46 |
):
|
47 |
super().__init__(**kwargs)
|
@@ -53,7 +50,7 @@ class FlashT5Config(T5Config):
|
|
53 |
self.use_randomized_position_encoding = use_randomized_position_encoding
|
54 |
self.label_smoothing = label_smoothing
|
55 |
self.z_loss = z_loss
|
56 |
-
self.
|
57 |
self.max_sequence_length = max_sequence_length
|
58 |
self.alibi_mode = alibi_mode
|
59 |
self.attention_dropout_rate = attention_dropout_rate
|
@@ -66,9 +63,6 @@ class FlashT5Config(T5Config):
|
|
66 |
self.rotary_interleaved = rotary_interleaved
|
67 |
self.rotary_scale_base = rotary_scale_base
|
68 |
self.rotary_emb_fraction = rotary_emb_fraction
|
69 |
-
self.fire_mlp_width = fire_mlp_width
|
70 |
-
self.use_masking = use_masking
|
71 |
-
self.attention_scale = attention_scale
|
72 |
|
73 |
self.auto_map = AUTO_MAP
|
74 |
|
|
|
6 |
from transformers import T5Config
|
7 |
|
8 |
AUTO_MAP = {
|
9 |
+
"AutoModel": "modeling_flash_t5.FlashT5EncoderModel",
|
10 |
"AutoModelForSeq2SeqLM": "modeling_flash_t5.FlashT5ForConditionalGeneration",
|
11 |
"AutoModelForTokenClassification": "custom_heads_flash_t5.FlashT5ForTokenClassification",
|
12 |
"AutoModelForQuestionAnswering": "custom_heads_flash_t5.FlashT5ForQuestionAnswering",
|
|
|
26 |
use_randomized_position_encoding=False,
|
27 |
label_smoothing=0.0,
|
28 |
z_loss=None,
|
29 |
+
use_flash_attention=None,
|
30 |
max_sequence_length=1024,
|
31 |
attention_dropout_rate=0.0,
|
32 |
alibi_mode="symetric",
|
|
|
39 |
rotary_base=10000,
|
40 |
rotary_interleaved=False,
|
41 |
rotary_scale_base=None,
|
|
|
|
|
|
|
42 |
**kwargs,
|
43 |
):
|
44 |
super().__init__(**kwargs)
|
|
|
50 |
self.use_randomized_position_encoding = use_randomized_position_encoding
|
51 |
self.label_smoothing = label_smoothing
|
52 |
self.z_loss = z_loss
|
53 |
+
self.use_flash_attention = use_flash_attention
|
54 |
self.max_sequence_length = max_sequence_length
|
55 |
self.alibi_mode = alibi_mode
|
56 |
self.attention_dropout_rate = attention_dropout_rate
|
|
|
63 |
self.rotary_interleaved = rotary_interleaved
|
64 |
self.rotary_scale_base = rotary_scale_base
|
65 |
self.rotary_emb_fraction = rotary_emb_fraction
|
|
|
|
|
|
|
66 |
|
67 |
self.auto_map = AUTO_MAP
|
68 |
|
cross_entropy_loss.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
|
2 |
+
# Copyright 2024 CATIE. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
# Modification to the original version from Unsloth:
|
17 |
+
# - return the z-loss
|
18 |
+
# - support for torch.compile
|
19 |
+
|
20 |
+
import triton
|
21 |
+
import triton.language as tl
|
22 |
+
import torch
|
23 |
+
|
24 |
+
MAX_FUSED_SIZE = 65536
|
25 |
+
next_power_of_2 = triton.next_power_of_2
|
26 |
+
|
27 |
+
def calculate_settings(n):
|
28 |
+
BLOCK_SIZE = next_power_of_2(n)
|
29 |
+
if BLOCK_SIZE > MAX_FUSED_SIZE:
|
30 |
+
raise RuntimeError(f"Cannot launch Triton kernel since n = {n} exceeds "\
|
31 |
+
f"the maximum CUDA blocksize = {MAX_FUSED_SIZE}.")
|
32 |
+
num_warps = 4
|
33 |
+
if BLOCK_SIZE >= 32768: num_warps = 32
|
34 |
+
elif BLOCK_SIZE >= 8192: num_warps = 16
|
35 |
+
elif BLOCK_SIZE >= 2048: num_warps = 8
|
36 |
+
return BLOCK_SIZE, num_warps
|
37 |
+
|
38 |
+
@triton.jit
|
39 |
+
def _cross_entropy_forward(logits_ptr, logits_row_stride,
|
40 |
+
loss_ptr,
|
41 |
+
lse_ptr,
|
42 |
+
labels_ptr,
|
43 |
+
n_cols,
|
44 |
+
BLOCK_SIZE: tl.constexpr,
|
45 |
+
IS_EVEN: tl.constexpr):
|
46 |
+
"""
|
47 |
+
Cross Entropy Loss = 1/n sum [ -yi log(Pi) ]
|
48 |
+
Pi = exp(xi) / sum(exp(xi))
|
49 |
+
CE_i = -y log(p) = -y log[ exp(x) / sum(exp(x)) ]
|
50 |
+
= -y [ x - log[sum(exp(x))] ]
|
51 |
+
= y * (log[sum(exp(x))] - x)
|
52 |
+
If y == 0: CE_i = 0
|
53 |
+
If y == 1: CE_i = logsumexp - x
|
54 |
+
"""
|
55 |
+
row_idx = tl.program_id(0)
|
56 |
+
logits_ptr += row_idx * logits_row_stride
|
57 |
+
loss_ptr += row_idx
|
58 |
+
lse_ptr += row_idx
|
59 |
+
labels_ptr += row_idx
|
60 |
+
|
61 |
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
62 |
+
mask = col_offsets < n_cols
|
63 |
+
|
64 |
+
# TODO: Fixup int32 locations to int64
|
65 |
+
label_idx = tl.load(labels_ptr).to(tl.int32)
|
66 |
+
if IS_EVEN:
|
67 |
+
logits = tl.load(logits_ptr + col_offsets).to(tl.float32)
|
68 |
+
else:
|
69 |
+
logits = tl.load(logits_ptr + col_offsets, mask=mask, other=-float("inf")).to(tl.float32)
|
70 |
+
|
71 |
+
max_logits = tl.max(logits, 0)
|
72 |
+
|
73 |
+
# Maximum stops overflow
|
74 |
+
lse = tl.log(tl.sum(tl.exp(logits - max_logits), 0)) + max_logits
|
75 |
+
tl.store(lse_ptr, lse)
|
76 |
+
|
77 |
+
if label_idx != -100:
|
78 |
+
logits_label = tl.load(logits_ptr + label_idx).to(tl.float32)
|
79 |
+
loss = lse - logits_label
|
80 |
+
else:
|
81 |
+
loss = 0.0
|
82 |
+
|
83 |
+
tl.store(loss_ptr, loss)
|
84 |
+
|
85 |
+
@triton.jit
|
86 |
+
def _cross_entropy_backward(logits_ptr, logits_row_stride,
|
87 |
+
dinputs_ptr, dinputs_row_stride,
|
88 |
+
dloss_ptr, dloss_row_stride,
|
89 |
+
dzloss_ptr, dzloss_row_stride,
|
90 |
+
lse_ptr,
|
91 |
+
labels_ptr,
|
92 |
+
n_cols,
|
93 |
+
BLOCK_SIZE: tl.constexpr,
|
94 |
+
USE_Z_LOSS: tl.constexpr,
|
95 |
+
IS_EVEN: tl.constexpr):
|
96 |
+
"""
|
97 |
+
CE_i = -y log(P) = y * (log[sum(exp(x))] - x)
|
98 |
+
dC/dx = d/dx (y * log[sum(exp(x))] - x * y)
|
99 |
+
|
100 |
+
From https://en.wikipedia.org/wiki/LogSumExp
|
101 |
+
d/dx logsumexp = exp(x) / sum(exp(x)) = softmax(x)
|
102 |
+
|
103 |
+
dC/dx = y * exp(x) / sum(exp(x)) - d/dx (x * y)
|
104 |
+
dC/dx = y * exp[ log[exp(x) / sum(exp(x))] ] using x = exp(log(x)) trick
|
105 |
+
dC/dx = y * exp[x - logsumexp] - d/dx (x * y)
|
106 |
+
|
107 |
+
If y == 0: dC/dx = 0
|
108 |
+
If y == 1 and x == label: dC/dlabel = exp[x - logsumexp] - 1
|
109 |
+
If y == 1 and x != label: dC/dx = exp[x - logsumexp]
|
110 |
+
"""
|
111 |
+
|
112 |
+
row_idx = tl.program_id(0)
|
113 |
+
|
114 |
+
logits_ptr += row_idx * logits_row_stride
|
115 |
+
dinputs_ptr += row_idx * dinputs_row_stride
|
116 |
+
dloss_ptr += row_idx * dloss_row_stride
|
117 |
+
dzloss_ptr += row_idx * dzloss_row_stride
|
118 |
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
119 |
+
mask = col_offsets < n_cols
|
120 |
+
# TODO: Fixup int32 locations to int64
|
121 |
+
label_idx = tl.load(labels_ptr + row_idx).to(tl.int32)
|
122 |
+
|
123 |
+
if label_idx != -100:
|
124 |
+
dloss = tl.load(dloss_ptr)
|
125 |
+
dzloss = tl.load(dzloss_ptr)
|
126 |
+
else:
|
127 |
+
dloss = 0.0
|
128 |
+
dzloss = 0.0
|
129 |
+
|
130 |
+
if IS_EVEN:
|
131 |
+
logits = tl.load(logits_ptr + col_offsets).to(tl.float32)
|
132 |
+
else:
|
133 |
+
logits = tl.load(logits_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
|
134 |
+
|
135 |
+
lse = tl.load(lse_ptr + row_idx)
|
136 |
+
probs = tl.exp(logits - lse)
|
137 |
+
|
138 |
+
probs = tl.where(col_offsets == label_idx, probs - 1.0, probs)
|
139 |
+
din = dloss * probs
|
140 |
+
|
141 |
+
# Z_loss
|
142 |
+
if USE_Z_LOSS:
|
143 |
+
if label_idx != -100:
|
144 |
+
dzloss = tl.load(dzloss_ptr)
|
145 |
+
else:
|
146 |
+
dzloss = 0.0
|
147 |
+
|
148 |
+
row_minus_max = logits
|
149 |
+
numerator = tl.exp(row_minus_max)
|
150 |
+
denominator = tl.sum(numerator, axis=0)
|
151 |
+
softmax_output = numerator / denominator
|
152 |
+
din += softmax_output * dzloss
|
153 |
+
|
154 |
+
if IS_EVEN:
|
155 |
+
tl.store(dinputs_ptr + col_offsets, din)
|
156 |
+
else:
|
157 |
+
tl.store(dinputs_ptr + col_offsets, din, mask=mask)
|
158 |
+
|
159 |
+
|
160 |
+
# Wrapper for triton kernel for torch.compile - should be unecessary for PyTorch 2.3 ?
|
161 |
+
torch.library.define("flasht5::cross_entropy_triton_fwd", "(Tensor logits, Tensor labels, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> (Tensor, Tensor)")
|
162 |
+
|
163 |
+
@torch.library.impl("flasht5::cross_entropy_triton_fwd", "default")
|
164 |
+
def cross_entropy_triton_fwd(logits, labels, n_cols, n_rows, BLOCK_SIZE, num_warps):
|
165 |
+
losses = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
|
166 |
+
logsumexp = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
|
167 |
+
|
168 |
+
_cross_entropy_forward[(n_rows,)](
|
169 |
+
logits, logits.stride(0),
|
170 |
+
losses,
|
171 |
+
logsumexp,
|
172 |
+
labels,
|
173 |
+
n_cols,
|
174 |
+
BLOCK_SIZE = BLOCK_SIZE,
|
175 |
+
IS_EVEN=((n_cols % BLOCK_SIZE) == 0),
|
176 |
+
num_warps = num_warps,
|
177 |
+
)
|
178 |
+
|
179 |
+
return losses, logsumexp
|
180 |
+
|
181 |
+
|
182 |
+
@torch.library.impl_abstract("flasht5::cross_entropy_triton_fwd", cross_entropy_triton_fwd)
|
183 |
+
def cross_entropy_triton_fwd_abstract(logits, labels, n_cols, n_rows, BLOCK_SIZE, num_warps):
|
184 |
+
losses = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
|
185 |
+
logsumexp = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
|
186 |
+
|
187 |
+
return losses, logsumexp
|
188 |
+
|
189 |
+
torch.library.define("flasht5::cross_entropy_triton_bwd", "(Tensor dlosses, Tensor dlogsumexp, Tensor logits, Tensor logsumexp, Tensor labels, float z_loss_factor, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> Tensor")
|
190 |
+
|
191 |
+
@torch.library.impl("flasht5::cross_entropy_triton_bwd", "default")
|
192 |
+
def cross_entropy_triton_bwd(dlosses, dlogsumexp, logits, logsumexp, labels, z_loss_factor, n_cols, n_rows, BLOCK_SIZE, num_warps):
|
193 |
+
|
194 |
+
dinputs = torch.empty_like(logits)
|
195 |
+
|
196 |
+
_cross_entropy_backward[(n_rows,)](
|
197 |
+
logits, logits.stride(0),
|
198 |
+
dinputs, dinputs.stride(0),
|
199 |
+
dlosses, dlosses.stride(0),
|
200 |
+
dlogsumexp, dlogsumexp.stride(0),
|
201 |
+
logsumexp,
|
202 |
+
labels,
|
203 |
+
n_cols,
|
204 |
+
BLOCK_SIZE = BLOCK_SIZE,
|
205 |
+
USE_Z_LOSS = (z_loss_factor != 0.0),
|
206 |
+
IS_EVEN=((n_cols % BLOCK_SIZE) == 0),
|
207 |
+
num_warps = num_warps,
|
208 |
+
)
|
209 |
+
|
210 |
+
return dinputs
|
211 |
+
|
212 |
+
|
213 |
+
@torch.library.impl_abstract("flasht5::cross_entropy_triton_bwd", cross_entropy_triton_bwd)
|
214 |
+
def cross_entropy_triton_bwd_abstract(dlosses, dlogsumexp, logits, logsumexp, labels, z_loss_factor, n_cols, n_rows, BLOCK_SIZE, num_warps):
|
215 |
+
return torch.empty_like(logits)
|
216 |
+
|
217 |
+
class Fast_CrossEntropyLoss(torch.autograd.Function):
|
218 |
+
@staticmethod
|
219 |
+
def forward(ctx, logits, labels, z_loss_factor):
|
220 |
+
n_rows, n_cols = logits.shape
|
221 |
+
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
222 |
+
|
223 |
+
losses, logsumexp = torch.ops.flasht5.cross_entropy_triton_fwd(
|
224 |
+
logits,
|
225 |
+
labels,
|
226 |
+
n_cols,
|
227 |
+
n_rows,
|
228 |
+
BLOCK_SIZE = BLOCK_SIZE,
|
229 |
+
num_warps = num_warps
|
230 |
+
)
|
231 |
+
|
232 |
+
ctx.BLOCK_SIZE = BLOCK_SIZE
|
233 |
+
ctx.num_warps = num_warps
|
234 |
+
ctx.z_loss_factor = z_loss_factor
|
235 |
+
ctx.save_for_backward(logits, logsumexp, labels)
|
236 |
+
return losses, logsumexp
|
237 |
+
|
238 |
+
@staticmethod
|
239 |
+
def backward(ctx, dlosses, dlogsumexp):
|
240 |
+
logits, logsumexp, labels = ctx.saved_tensors
|
241 |
+
n_rows, n_cols = logits.shape
|
242 |
+
|
243 |
+
dinputs = torch.ops.flasht5.cross_entropy_triton_bwd(
|
244 |
+
dlosses,
|
245 |
+
dlogsumexp,
|
246 |
+
logits,
|
247 |
+
logsumexp,
|
248 |
+
labels,
|
249 |
+
ctx.z_loss_factor,
|
250 |
+
n_cols,
|
251 |
+
n_rows,
|
252 |
+
ctx.BLOCK_SIZE,
|
253 |
+
ctx.num_warps
|
254 |
+
)
|
255 |
+
return dinputs, None, None
|
256 |
+
|
257 |
+
def fast_cross_entropy_loss(logits, labels, z_loss_factor=0.0):
|
258 |
+
"""
|
259 |
+
Arguments:
|
260 |
+
logits: (batch, seq_len, vocab_size)
|
261 |
+
labels: (batch, seq_len,)
|
262 |
+
Returns:
|
263 |
+
losses: float
|
264 |
+
"""
|
265 |
+
batch, seq_len, d = logits.shape
|
266 |
+
assert(labels.shape == (batch, seq_len))
|
267 |
+
assert (d <= MAX_FUSED_SIZE)
|
268 |
+
|
269 |
+
loss, lse = Fast_CrossEntropyLoss.apply(
|
270 |
+
logits.view(batch*seq_len, d),
|
271 |
+
labels.view(-1),
|
272 |
+
z_loss_factor
|
273 |
+
)
|
274 |
+
|
275 |
+
n_items = torch.count_nonzero(labels != -100)
|
276 |
+
|
277 |
+
return loss.sum() / n_items, (z_loss_factor * torch.square(lse).sum()) / n_items
|
custom_heads_flash_t5.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
4 |
+
import copy
|
5 |
+
from typing import Optional, Union, Tuple, List
|
6 |
+
from transformers.modeling_outputs import (
|
7 |
+
Seq2SeqQuestionAnsweringModelOutput,
|
8 |
+
QuestionAnsweringModelOutput,
|
9 |
+
TokenClassifierOutput,
|
10 |
+
BaseModelOutput,
|
11 |
+
Seq2SeqSequenceClassifierOutput,
|
12 |
+
SequenceClassifierOutput
|
13 |
+
)
|
14 |
+
|
15 |
+
from .modeling_flash_t5 import FlashT5PreTrainedModel, FlashT5Stack, FlashT5Model, FlashT5EncoderModel
|
16 |
+
from .configuration_flash_t5 import FlashT5Config
|
17 |
+
|
18 |
+
|
19 |
+
################## Encoder only head ##################
|
20 |
+
class FlashT5ForTokenClassification(FlashT5PreTrainedModel):
|
21 |
+
|
22 |
+
def __init__(self, config: FlashT5Config):
|
23 |
+
super().__init__(config)
|
24 |
+
self.num_labels = config.num_labels
|
25 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
26 |
+
|
27 |
+
self.encoder = FlashT5Stack(config, self.shared)
|
28 |
+
self.dropout = nn.Dropout(config.classifier_dropout)
|
29 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
30 |
+
|
31 |
+
# Initialize weights and apply final processing
|
32 |
+
self.post_init()
|
33 |
+
|
34 |
+
# Initialize classifier
|
35 |
+
self.classifier.weight.data.normal_(mean=0.0, std=config.initializer_factor * 1.0)
|
36 |
+
self.classifier.bias.data.zero_()
|
37 |
+
|
38 |
+
self.model_parallel = False
|
39 |
+
|
40 |
+
def forward(
|
41 |
+
self,
|
42 |
+
input_ids: Optional[torch.Tensor] = None,
|
43 |
+
attention_mask: Optional[torch.Tensor] = None,
|
44 |
+
head_mask: Optional[torch.Tensor] = None,
|
45 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
46 |
+
labels: Optional[torch.Tensor] = None,
|
47 |
+
output_attentions: Optional[bool] = None,
|
48 |
+
output_hidden_states: Optional[bool] = None,
|
49 |
+
return_dict: Optional[bool] = None,
|
50 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
51 |
+
r"""
|
52 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
53 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
54 |
+
Returns:
|
55 |
+
"""
|
56 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
57 |
+
|
58 |
+
outputs = self.encoder(
|
59 |
+
input_ids=input_ids,
|
60 |
+
attention_mask=attention_mask,
|
61 |
+
inputs_embeds=inputs_embeds,
|
62 |
+
head_mask=head_mask,
|
63 |
+
output_attentions=output_attentions,
|
64 |
+
output_hidden_states=output_hidden_states,
|
65 |
+
return_dict=return_dict,
|
66 |
+
)
|
67 |
+
|
68 |
+
hidden_states = outputs[0]
|
69 |
+
hidden_states = self.dropout(hidden_states)
|
70 |
+
logits = self.classifier(hidden_states)
|
71 |
+
|
72 |
+
loss = None
|
73 |
+
if labels is not None:
|
74 |
+
loss_fct = nn.CrossEntropyLoss()
|
75 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
76 |
+
|
77 |
+
if not return_dict:
|
78 |
+
output = (logits, outputs[2:-1])
|
79 |
+
return ((loss,) + output) if loss is not None else output
|
80 |
+
|
81 |
+
return TokenClassifierOutput(
|
82 |
+
loss=loss,
|
83 |
+
logits=logits,
|
84 |
+
hidden_states=outputs.hidden_states,
|
85 |
+
attentions=outputs.attentions,
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
class FlashT5ClassificationHead(nn.Module):
|
90 |
+
"""Head for sentence-level classification tasks."""
|
91 |
+
|
92 |
+
def __init__(self, config: FlashT5Config):
|
93 |
+
super().__init__()
|
94 |
+
self.dense = nn.Linear(config.d_model, config.d_model)
|
95 |
+
self.dropout = nn.Dropout(p=config.classifier_dropout)
|
96 |
+
self.out_proj = nn.Linear(config.d_model, config.num_labels)
|
97 |
+
|
98 |
+
# initialize weights
|
99 |
+
factor = config.initializer_factor
|
100 |
+
self.dense.weight.data.normal_(mean=0.0, std=factor * ((config.d_model) ** -0.5))
|
101 |
+
if hasattr(self.dense, "bias") and self.dense.bias is not None:
|
102 |
+
self.dense.bias.data.zero_()
|
103 |
+
self.out_proj.weight.data.normal_(mean=0.0, std=factor * ((config.d_model) ** -0.5))
|
104 |
+
if hasattr(self.out_proj, "bias") and self.out_proj.bias is not None:
|
105 |
+
self.out_proj.bias.data.zero_()
|
106 |
+
|
107 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
108 |
+
hidden_states = self.dropout(hidden_states)
|
109 |
+
hidden_states = self.dense(hidden_states)
|
110 |
+
hidden_states = torch.tanh(hidden_states)
|
111 |
+
hidden_states = self.dropout(hidden_states)
|
112 |
+
hidden_states = self.out_proj(hidden_states)
|
113 |
+
return hidden_states
|
114 |
+
|
115 |
+
|
116 |
+
class FlashT5ForSequenceClassification(FlashT5PreTrainedModel):
|
117 |
+
_keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"]
|
118 |
+
|
119 |
+
def __init__(self, config: FlashT5Config):
|
120 |
+
super().__init__(config)
|
121 |
+
self.model_dim = config.d_model
|
122 |
+
self.config.problem_type = None
|
123 |
+
self.config.is_encoder_decoder = False
|
124 |
+
|
125 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
126 |
+
|
127 |
+
encoder_config = copy.deepcopy(config)
|
128 |
+
encoder_config.is_decoder = False
|
129 |
+
encoder_config.is_encoder_decoder = False
|
130 |
+
encoder_config.use_cache = False
|
131 |
+
self.encoder = FlashT5Stack(encoder_config, self.shared)
|
132 |
+
self.classification_head = FlashT5ClassificationHead(config)
|
133 |
+
|
134 |
+
# Initialize weights and apply final processing
|
135 |
+
self.post_init()
|
136 |
+
|
137 |
+
self.model_parallel = False
|
138 |
+
|
139 |
+
def forward(
|
140 |
+
self,
|
141 |
+
input_ids: torch.LongTensor = None,
|
142 |
+
attention_mask: Optional[torch.Tensor] = None,
|
143 |
+
head_mask: Optional[torch.Tensor] = None,
|
144 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
145 |
+
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
|
146 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
147 |
+
labels: Optional[torch.LongTensor] = None,
|
148 |
+
use_cache: Optional[bool] = None,
|
149 |
+
output_attentions: Optional[bool] = None,
|
150 |
+
output_hidden_states: Optional[bool] = None,
|
151 |
+
return_dict: Optional[bool] = None,
|
152 |
+
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
|
153 |
+
r"""
|
154 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
155 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
156 |
+
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
157 |
+
Returns:
|
158 |
+
"""
|
159 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
160 |
+
if labels is not None:
|
161 |
+
use_cache = False
|
162 |
+
|
163 |
+
if input_ids is None and inputs_embeds is not None:
|
164 |
+
raise NotImplementedError(
|
165 |
+
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
|
166 |
+
)
|
167 |
+
|
168 |
+
|
169 |
+
outputs = self.encoder(
|
170 |
+
input_ids=input_ids,
|
171 |
+
attention_mask=attention_mask,
|
172 |
+
inputs_embeds=inputs_embeds,
|
173 |
+
head_mask=head_mask,
|
174 |
+
output_attentions=output_attentions,
|
175 |
+
output_hidden_states=output_hidden_states,
|
176 |
+
return_dict=return_dict,
|
177 |
+
)
|
178 |
+
sequence_output = outputs[0]
|
179 |
+
|
180 |
+
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)
|
181 |
+
|
182 |
+
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
|
183 |
+
raise ValueError("All examples must have the same number of <eos> tokens.")
|
184 |
+
batch_size, _, hidden_size = sequence_output.shape
|
185 |
+
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :]
|
186 |
+
logits = self.classification_head(sentence_representation)
|
187 |
+
|
188 |
+
loss = None
|
189 |
+
if labels is not None:
|
190 |
+
labels = labels.to(logits.device)
|
191 |
+
if self.config.problem_type is None:
|
192 |
+
if self.config.num_labels == 1:
|
193 |
+
self.config.problem_type = "regression"
|
194 |
+
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
195 |
+
self.config.problem_type = "single_label_classification"
|
196 |
+
else:
|
197 |
+
self.config.problem_type = "multi_label_classification"
|
198 |
+
|
199 |
+
if self.config.problem_type == "regression":
|
200 |
+
loss_fct = nn.MSELoss()
|
201 |
+
if self.config.num_labels == 1:
|
202 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
203 |
+
else:
|
204 |
+
loss = loss_fct(logits, labels)
|
205 |
+
elif self.config.problem_type == "single_label_classification":
|
206 |
+
loss_fct = nn.CrossEntropyLoss()
|
207 |
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
208 |
+
elif self.config.problem_type == "multi_label_classification":
|
209 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
210 |
+
loss = loss_fct(logits, labels)
|
211 |
+
if not return_dict:
|
212 |
+
output = (logits,) + outputs[1:]
|
213 |
+
return ((loss,) + output) if loss is not None else output
|
214 |
+
|
215 |
+
return SequenceClassifierOutput(
|
216 |
+
loss=loss,
|
217 |
+
logits=logits,
|
218 |
+
hidden_states=outputs.hidden_states,
|
219 |
+
attentions=outputs.attentions
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
################## Seq2Seq head ##################
|
225 |
+
class FlashT5ForQuestionAnswering(FlashT5PreTrainedModel):
|
226 |
+
_keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"]
|
227 |
+
|
228 |
+
def __init__(self, config: FlashT5Config):
|
229 |
+
super().__init__(config)
|
230 |
+
self.transformer = FlashT5EncoderModel(config)
|
231 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
232 |
+
|
233 |
+
# Initialize weights and apply final processing
|
234 |
+
self.post_init()
|
235 |
+
|
236 |
+
self.model_parallel = False
|
237 |
+
|
238 |
+
def forward(
|
239 |
+
self,
|
240 |
+
input_ids: Optional[torch.LongTensor] = None,
|
241 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
242 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
243 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
244 |
+
start_positions: Optional[torch.LongTensor] = None,
|
245 |
+
end_positions: Optional[torch.LongTensor] = None,
|
246 |
+
output_attentions: Optional[bool] = None,
|
247 |
+
output_hidden_states: Optional[bool] = None,
|
248 |
+
return_dict: Optional[bool] = None,
|
249 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
250 |
+
r"""
|
251 |
+
Returns:
|
252 |
+
|
253 |
+
Example:
|
254 |
+
|
255 |
+
```python
|
256 |
+
>>> from transformers import AutoTokenizer, MTxEncoderForQuestionAnswering
|
257 |
+
|
258 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("MTx-small")
|
259 |
+
>>> model = MTxEncoderForQuestionAnswering.from_pretrained("MTx-small")
|
260 |
+
>>> input_ids = tokenizer(
|
261 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
262 |
+
... ).input_ids # Batch size 1
|
263 |
+
>>> outputs = model(input_ids=input_ids)
|
264 |
+
>>> start_logits = outputs.start_logits
|
265 |
+
>>> end_logits = outputs.end_logits
|
266 |
+
```"""
|
267 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
268 |
+
|
269 |
+
outputs = self.transformer(
|
270 |
+
input_ids,
|
271 |
+
attention_mask=attention_mask,
|
272 |
+
head_mask=head_mask,
|
273 |
+
inputs_embeds=inputs_embeds,
|
274 |
+
output_attentions=output_attentions,
|
275 |
+
output_hidden_states=output_hidden_states,
|
276 |
+
return_dict=return_dict,
|
277 |
+
)
|
278 |
+
sequence_output = outputs[0]
|
279 |
+
|
280 |
+
logits = self.qa_outputs(sequence_output)
|
281 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
282 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
283 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
284 |
+
|
285 |
+
total_loss = None
|
286 |
+
if start_positions is not None and end_positions is not None:
|
287 |
+
# If we are on multi-GPU, split add a dimension
|
288 |
+
if len(start_positions.size()) > 1:
|
289 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
290 |
+
if len(end_positions.size()) > 1:
|
291 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
292 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
293 |
+
ignored_index = start_logits.size(1)
|
294 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
295 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
296 |
+
|
297 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
298 |
+
start_loss = loss_fct(start_logits, start_positions)
|
299 |
+
end_loss = loss_fct(end_logits, end_positions)
|
300 |
+
total_loss = (start_loss + end_loss) / 2
|
301 |
+
|
302 |
+
if not return_dict:
|
303 |
+
output = (start_logits, end_logits) + outputs[1:]
|
304 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
305 |
+
|
306 |
+
return QuestionAnsweringModelOutput(
|
307 |
+
loss=total_loss,
|
308 |
+
start_logits=start_logits,
|
309 |
+
end_logits=end_logits,
|
310 |
+
hidden_states=outputs.hidden_states,
|
311 |
+
attentions=outputs.attentions,
|
312 |
+
)
|
fa2_compilable.py
ADDED
@@ -0,0 +1,642 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Tri Dao.
|
2 |
+
|
3 |
+
from typing import Optional, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
# isort: off
|
9 |
+
# We need to import the CUDA kernels after importing torch
|
10 |
+
import flash_attn_2_cuda as flash_attn_cuda
|
11 |
+
|
12 |
+
# isort: on
|
13 |
+
|
14 |
+
torch.library.define("fa2::fwd", "(Tensor q, Tensor k, Tensor v, Tensor out, Tensor alibi_slopes, float dropout_p, float softmax_scale, bool causal, int window_size_left, int window_size_right, Tensor attn_bias, bool return_softmax, Tensor gen_) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor)")
|
15 |
+
|
16 |
+
@torch.library.impl("fa2::fwd", "default")
|
17 |
+
def cuda_fa2_fwd(
|
18 |
+
q: torch.Tensor,
|
19 |
+
k: torch.Tensor,
|
20 |
+
v: torch.Tensor,
|
21 |
+
out: torch.Tensor,
|
22 |
+
alibi_slopes: torch.Tensor,
|
23 |
+
dropout_p: float,
|
24 |
+
softmax_scale: float,
|
25 |
+
causal: bool,
|
26 |
+
window_size_left: int,
|
27 |
+
window_size_right: int,
|
28 |
+
attn_bias: torch.Tensor,
|
29 |
+
return_softmax: bool,
|
30 |
+
gen_: torch.Tensor,
|
31 |
+
):
|
32 |
+
|
33 |
+
out, q, k, v, out_padded, attn_bias, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd(q, k, v, out, alibi_slopes, dropout_p, softmax_scale, causal, window_size_left, window_size_right, attn_bias, return_softmax, None)
|
34 |
+
return out, q, k, v, out_padded, attn_bias, softmax_lse, S_dmask, rng_state
|
35 |
+
|
36 |
+
@torch.library.impl_abstract("fa2::fwd", cuda_fa2_fwd)
|
37 |
+
def meta_fa2_fwd(
|
38 |
+
q: torch.Tensor,
|
39 |
+
k: torch.Tensor,
|
40 |
+
v: torch.Tensor,
|
41 |
+
out: torch.Tensor,
|
42 |
+
alibi_slopes: torch.Tensor,
|
43 |
+
dropout_p: float,
|
44 |
+
softmax_scale: float,
|
45 |
+
causal: bool,
|
46 |
+
window_size_left: int,
|
47 |
+
window_size_right: int,
|
48 |
+
attn_bias: torch.Tensor,
|
49 |
+
return_softmax: bool,
|
50 |
+
gen_: torch.Tensor
|
51 |
+
):
|
52 |
+
|
53 |
+
round_multiple = lambda x, m: (x + m - 1) // m * m
|
54 |
+
batch_size = q.shape[0]
|
55 |
+
seqlen_q = q.shape[1]
|
56 |
+
seqlen_k = k.shape[1]
|
57 |
+
num_heads = q.shape[2]
|
58 |
+
head_dim_og = q.shape[3]
|
59 |
+
seqlen_q_rounded = round_multiple(seqlen_q, 128)
|
60 |
+
seqlen_k_rounded = round_multiple(seqlen_k, 128)
|
61 |
+
seqlen_q_rounded_8 = round_multiple(seqlen_q, 8)
|
62 |
+
seqlen_k_rounded_8 = round_multiple(seqlen_k, 8)
|
63 |
+
head_dim = round_multiple(head_dim_og, 8)
|
64 |
+
|
65 |
+
if attn_bias is not None:
|
66 |
+
batch_size_bias = attn_bias.shape[0]
|
67 |
+
num_heads_bias = attn_bias.shape[1]
|
68 |
+
|
69 |
+
return (torch.empty_strided((batch_size, seqlen_q, num_heads, head_dim_og),
|
70 |
+
(head_dim*num_heads*seqlen_q, head_dim*num_heads, head_dim, 1), device=q.device, dtype=q.dtype), # out
|
71 |
+
q.new_empty((batch_size, seqlen_q, num_heads, head_dim)), # q_padded
|
72 |
+
k.new_empty((batch_size, seqlen_k, num_heads, head_dim)), # k_padded
|
73 |
+
v.new_empty((batch_size, seqlen_k, num_heads, head_dim)), # v_padded
|
74 |
+
q.new_empty((batch_size, seqlen_q, num_heads, head_dim)), # out_padded
|
75 |
+
q.new_empty((batch_size_bias, num_heads_bias, seqlen_q_rounded_8, seqlen_k_rounded_8)) if attn_bias is not None else None, # attn_bias
|
76 |
+
q.new_empty((batch_size, num_heads, seqlen_q)), # softmax_lse
|
77 |
+
q.new_empty((batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded)) if return_softmax and (dropout_p > 0) else None, # p
|
78 |
+
torch.empty((2), dtype=torch.int64, device=q.device) # rng_state
|
79 |
+
)
|
80 |
+
|
81 |
+
torch.library.define("fa2::bwd", "(Tensor dout, Tensor q, Tensor k, Tensor v, Tensor out, Tensor softmax_lse, Tensor dq, Tensor dk, Tensor dv, Tensor alibi_slopes, float dropout_p, float softmax_scale, bool causal, int window_size_left, int window_size_right, bool deterministic, Tensor attn_bias, bool attn_bias_require_grad, Tensor ds, int seqlen_k_orig, Tensor gen_, Tensor rng_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)")
|
82 |
+
|
83 |
+
@torch.library.impl("fa2::bwd", "default")
|
84 |
+
def cuda_fa2_bwd(
|
85 |
+
dout: torch.Tensor,
|
86 |
+
q: torch.Tensor,
|
87 |
+
k: torch.Tensor,
|
88 |
+
v: torch.Tensor,
|
89 |
+
out: torch.Tensor,
|
90 |
+
softmax_lse: torch.Tensor,
|
91 |
+
dq: torch.Tensor,
|
92 |
+
dk: torch.Tensor,
|
93 |
+
dv: torch.Tensor,
|
94 |
+
alibi_slopes: torch.Tensor,
|
95 |
+
dropout_p: float,
|
96 |
+
softmax_scale: float,
|
97 |
+
causal: bool,
|
98 |
+
window_size_left: int,
|
99 |
+
window_size_right: int,
|
100 |
+
deterministic: bool,
|
101 |
+
attn_bias: torch.Tensor,
|
102 |
+
attn_bias_require_grad: bool,
|
103 |
+
ds: torch.Tensor,
|
104 |
+
seqlen_k_orig: int,
|
105 |
+
gen_: torch.Tensor,
|
106 |
+
rng_sate: torch.Tensor
|
107 |
+
):
|
108 |
+
dq, dk, dv, ds, s = flash_attn_cuda.bwd(dout, q, k, v, out, softmax_lse, dq, dk, dv, alibi_slopes, dropout_p, softmax_scale, causal, window_size_left, window_size_right, deterministic, attn_bias, attn_bias_require_grad, ds, None, rng_sate)
|
109 |
+
return dq, dk, dv, ds, s
|
110 |
+
|
111 |
+
@torch.library.impl_abstract("fa2::bwd", cuda_fa2_bwd)
|
112 |
+
def meta_fa2_bwd(
|
113 |
+
dout: torch.Tensor,
|
114 |
+
q: torch.Tensor,
|
115 |
+
k: torch.Tensor,
|
116 |
+
v: torch.Tensor,
|
117 |
+
out: torch.Tensor,
|
118 |
+
softmax_lse: torch.Tensor,
|
119 |
+
dq: torch.Tensor,
|
120 |
+
dk: torch.Tensor,
|
121 |
+
dv: torch.Tensor,
|
122 |
+
alibi_slopes: torch.Tensor,
|
123 |
+
dropout_p: float,
|
124 |
+
softmax_scale: float,
|
125 |
+
causal: bool,
|
126 |
+
window_size_left: int,
|
127 |
+
window_size_right: int,
|
128 |
+
deterministic: bool,
|
129 |
+
attn_bias: torch.Tensor,
|
130 |
+
attn_bias_require_grad: bool,
|
131 |
+
ds: torch.Tensor,
|
132 |
+
seqlen_k_orig: int,
|
133 |
+
gen_: torch.Tensor,
|
134 |
+
rng_sate: torch.Tensor
|
135 |
+
):
|
136 |
+
|
137 |
+
round_multiple = lambda x, m: (x + m - 1) // m * m
|
138 |
+
batch_size = dout.shape[0]
|
139 |
+
seqlen_q = dout.shape[1]
|
140 |
+
seqlen_k = k.shape[1]
|
141 |
+
seqlen_q_rounded = round_multiple(seqlen_q, 128)
|
142 |
+
num_heads = dout.shape[2]
|
143 |
+
head_dim_og = dout.shape[3]
|
144 |
+
head_dim = round_multiple(head_dim_og, 8)
|
145 |
+
seqlen_q_round8 = round_multiple(seqlen_q, 8)
|
146 |
+
seqlen_k_round8 = round_multiple(seqlen_k_orig, 8)
|
147 |
+
|
148 |
+
if attn_bias is not None:
|
149 |
+
batch_size_bias = attn_bias.shape[0]
|
150 |
+
num_heads_bias = attn_bias.shape[1]
|
151 |
+
|
152 |
+
return (torch.empty_strided((batch_size, seqlen_q, num_heads, head_dim_og),
|
153 |
+
(head_dim*num_heads*seqlen_q, head_dim*num_heads, head_dim, 1), device=q.device, dtype=q.dtype),
|
154 |
+
torch.empty_strided((batch_size, seqlen_k_orig, num_heads, head_dim_og),
|
155 |
+
(head_dim*num_heads*seqlen_k, head_dim*num_heads, head_dim, 1), device=k.device, dtype=k.dtype),
|
156 |
+
torch.empty_strided((batch_size, seqlen_k, num_heads, head_dim_og),
|
157 |
+
(head_dim*num_heads*seqlen_k, head_dim*num_heads, head_dim, 1), device=v.device, dtype=v.dtype),
|
158 |
+
torch.empty_strided((batch_size_bias, num_heads_bias, seqlen_q, seqlen_k_orig),
|
159 |
+
(num_heads_bias*seqlen_q_round8*seqlen_k_round8, seqlen_q_round8*seqlen_k_round8, seqlen_q_round8, 1), device=v.device, dtype=v.dtype)
|
160 |
+
if attn_bias_require_grad else None,
|
161 |
+
q.new_empty((batch_size, num_heads, seqlen_q_rounded))
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
166 |
+
@staticmethod
|
167 |
+
def forward(
|
168 |
+
ctx,
|
169 |
+
qkv,
|
170 |
+
dropout_p,
|
171 |
+
softmax_scale,
|
172 |
+
causal,
|
173 |
+
window_size_left,
|
174 |
+
window_size_right,
|
175 |
+
alibi_slopes,
|
176 |
+
deterministic,
|
177 |
+
attn_bias,
|
178 |
+
return_softmax,
|
179 |
+
return_ds
|
180 |
+
):
|
181 |
+
if softmax_scale is None:
|
182 |
+
softmax_scale = qkv.shape[-1] ** (-0.5)
|
183 |
+
|
184 |
+
out, q_padded, k_padded, v_padded, out_padded, attn_bias_padded, softmax_lse, S_dmask, rng_state = torch.ops.fa2.fwd(
|
185 |
+
qkv[:, :, 0],
|
186 |
+
qkv[:, :, 1],
|
187 |
+
qkv[:, :, 2],
|
188 |
+
None,
|
189 |
+
alibi_slopes,
|
190 |
+
dropout_p,
|
191 |
+
softmax_scale,
|
192 |
+
causal,
|
193 |
+
window_size_left,
|
194 |
+
window_size_right,
|
195 |
+
attn_bias,
|
196 |
+
return_softmax and dropout_p > 0,
|
197 |
+
None
|
198 |
+
)
|
199 |
+
|
200 |
+
## WORKAROUND a Pytorch bug, should use _padded version of the tensors but this is buggy when passing them directly to save_for_backward
|
201 |
+
## For now, this breaks the backward when headdim is not a multiple of 8 and/or seqlen_q, seqlen_k are not a multiple of 8
|
202 |
+
## TODO: make the padding here instead
|
203 |
+
ctx.save_for_backward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], out, softmax_lse, rng_state, attn_bias, alibi_slopes)
|
204 |
+
#ctx.save_for_backward(q_padded, k_padded, v_padded, out_padded, softmax_lse, rng_state, attn_bias_padded, alibi_slopes)
|
205 |
+
ctx.dropout_p = dropout_p
|
206 |
+
ctx.softmax_scale = softmax_scale
|
207 |
+
ctx.causal = causal
|
208 |
+
ctx.window_size_left = window_size_left
|
209 |
+
ctx.window_size_right = window_size_right
|
210 |
+
ctx.deterministic = deterministic
|
211 |
+
ctx.bias_requires_grad = True if attn_bias is not None and return_ds else False
|
212 |
+
ctx.seqlen_k_orig = qkv.shape[1]
|
213 |
+
|
214 |
+
return out if not return_softmax else (out, softmax_lse, S_dmask)
|
215 |
+
|
216 |
+
@staticmethod
|
217 |
+
def backward(ctx, dout, *args):
|
218 |
+
q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes = ctx.saved_tensors
|
219 |
+
|
220 |
+
dq, dk, dv, ds, _ = torch.ops.fa2.bwd(
|
221 |
+
dout,
|
222 |
+
q,
|
223 |
+
k,
|
224 |
+
v,
|
225 |
+
out,
|
226 |
+
softmax_lse,
|
227 |
+
None,
|
228 |
+
None,
|
229 |
+
None,
|
230 |
+
alibi_slopes,
|
231 |
+
ctx.dropout_p,
|
232 |
+
ctx.softmax_scale,
|
233 |
+
ctx.causal,
|
234 |
+
ctx.window_size_left,
|
235 |
+
ctx.window_size_right,
|
236 |
+
ctx.deterministic,
|
237 |
+
attn_bias,
|
238 |
+
ctx.bias_requires_grad,
|
239 |
+
None,
|
240 |
+
ctx.seqlen_k_orig,
|
241 |
+
None,
|
242 |
+
rng_state
|
243 |
+
)
|
244 |
+
dqkv = torch.stack([dq, dk, dv], dim=2)
|
245 |
+
return dqkv, None, None, None, None, None, None, None, ds, None, None
|
246 |
+
|
247 |
+
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
248 |
+
@staticmethod
|
249 |
+
def forward(
|
250 |
+
ctx,
|
251 |
+
q,
|
252 |
+
kv,
|
253 |
+
dropout_p,
|
254 |
+
softmax_scale,
|
255 |
+
causal,
|
256 |
+
window_size_left,
|
257 |
+
window_size_right,
|
258 |
+
alibi_slopes,
|
259 |
+
deterministic,
|
260 |
+
attn_bias,
|
261 |
+
return_softmax,
|
262 |
+
return_ds
|
263 |
+
):
|
264 |
+
if softmax_scale is None:
|
265 |
+
softmax_scale = q.shape[-1] ** (-0.5)
|
266 |
+
|
267 |
+
out, q_padded, k_padded, v_padded, out_padded, attn_bias_padded, softmax_lse, S_dmask, rng_state = torch.ops.fa2.fwd(
|
268 |
+
q,
|
269 |
+
kv[:, :, 0],
|
270 |
+
kv[:, :, 1],
|
271 |
+
None,
|
272 |
+
alibi_slopes,
|
273 |
+
dropout_p,
|
274 |
+
softmax_scale,
|
275 |
+
causal,
|
276 |
+
window_size_left,
|
277 |
+
window_size_right,
|
278 |
+
attn_bias,
|
279 |
+
return_softmax and dropout_p > 0,
|
280 |
+
None
|
281 |
+
)
|
282 |
+
|
283 |
+
## WORKAROUND a Pytorch bug, should use _padded version of the tensors but this is buggy when passing them directly to save_for_backward
|
284 |
+
## For now, this breaks the backward when headdim is not a multiple of 8 and/or seqlen_q, seqlen_k are not a multiple of 8
|
285 |
+
## TODO: make the padding here instead
|
286 |
+
ctx.save_for_backward(q, kv[:, :, 0], kv[:, :, 1], out, softmax_lse, rng_state, attn_bias, alibi_slopes)
|
287 |
+
#ctx.save_for_backward(q_padded, k_padded, v_padded, out_padded, softmax_lse, rng_state, attn_bias_padded, alibi_slopes)
|
288 |
+
ctx.dropout_p = dropout_p
|
289 |
+
ctx.softmax_scale = softmax_scale
|
290 |
+
ctx.causal = causal
|
291 |
+
ctx.window_size_left = window_size_left
|
292 |
+
ctx.window_size_right = window_size_right
|
293 |
+
ctx.deterministic = deterministic
|
294 |
+
ctx.bias_requires_grad = True if attn_bias is not None and return_ds else False
|
295 |
+
ctx.seqlen_k_orig = kv.shape[1]
|
296 |
+
return out if not return_softmax else (out, softmax_lse, S_dmask)
|
297 |
+
|
298 |
+
@staticmethod
|
299 |
+
def backward(ctx, dout, *args):
|
300 |
+
q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes = ctx.saved_tensors
|
301 |
+
|
302 |
+
dq, dk, dv, ds, _ = torch.ops.fa2.bwd(
|
303 |
+
dout,
|
304 |
+
q,
|
305 |
+
k,
|
306 |
+
v,
|
307 |
+
out,
|
308 |
+
softmax_lse,
|
309 |
+
None,
|
310 |
+
None,
|
311 |
+
None,
|
312 |
+
alibi_slopes,
|
313 |
+
ctx.dropout_p,
|
314 |
+
ctx.softmax_scale,
|
315 |
+
ctx.causal,
|
316 |
+
ctx.window_size_left,
|
317 |
+
ctx.window_size_right,
|
318 |
+
ctx.deterministic,
|
319 |
+
attn_bias,
|
320 |
+
ctx.bias_requires_grad,
|
321 |
+
None,
|
322 |
+
ctx.seqlen_k_orig,
|
323 |
+
None,
|
324 |
+
rng_state
|
325 |
+
)
|
326 |
+
dkv = torch.stack([dk, dv], dim=2)
|
327 |
+
|
328 |
+
return dq, dkv, None, None, None, None, None, None, None, ds, None, None
|
329 |
+
|
330 |
+
class FlashAttnFunc(torch.autograd.Function):
|
331 |
+
@staticmethod
|
332 |
+
def forward(
|
333 |
+
ctx,
|
334 |
+
q,
|
335 |
+
k,
|
336 |
+
v,
|
337 |
+
dropout_p,
|
338 |
+
softmax_scale,
|
339 |
+
causal,
|
340 |
+
window_size_left,
|
341 |
+
window_size_right,
|
342 |
+
alibi_slopes,
|
343 |
+
deterministic,
|
344 |
+
attn_bias,
|
345 |
+
return_softmax,
|
346 |
+
return_ds
|
347 |
+
):
|
348 |
+
|
349 |
+
batch_size, seqlen_q = q.shape[:2]
|
350 |
+
seqlen_k = k.shape[1]
|
351 |
+
|
352 |
+
if softmax_scale is None:
|
353 |
+
softmax_scale = q.shape[-1] ** (-0.5)
|
354 |
+
|
355 |
+
if attn_bias is not None:
|
356 |
+
attn_bias = attn_bias.to(q.dtype)
|
357 |
+
|
358 |
+
out, q_padded, k_padded, v_padded, out_padded, attn_bias_padded, softmax_lse, S_dmask, rng_state = torch.ops.fa2.fwd(
|
359 |
+
q,
|
360 |
+
k,
|
361 |
+
v,
|
362 |
+
None,
|
363 |
+
alibi_slopes,
|
364 |
+
dropout_p,
|
365 |
+
softmax_scale,
|
366 |
+
causal,
|
367 |
+
window_size_left,
|
368 |
+
window_size_right,
|
369 |
+
attn_bias,
|
370 |
+
return_softmax and dropout_p > 0,
|
371 |
+
None
|
372 |
+
)
|
373 |
+
|
374 |
+
## WORKAROUND a Pytorch bug, should use _padded version of the tensors but this is buggy when passing them directly to save_for_backward
|
375 |
+
## For now, this breaks the backward when headdim is not a multiple of 8 and/or seqlen_q, seqlen_k are not a multiple of 8
|
376 |
+
## TODO: make the padding here instead
|
377 |
+
ctx.save_for_backward(q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes)
|
378 |
+
#ctx.save_for_backward(q_padded, k_padded, v_padded, out_padded, softmax_lse, rng_state, attn_bias_padded, alibi_slopes)
|
379 |
+
|
380 |
+
ctx.dropout_p = dropout_p
|
381 |
+
ctx.softmax_scale = softmax_scale
|
382 |
+
ctx.causal = causal
|
383 |
+
ctx.window_size_left = window_size_left
|
384 |
+
ctx.window_size_right = window_size_right
|
385 |
+
ctx.deterministic = deterministic
|
386 |
+
ctx.bias_requires_grad = True if attn_bias is not None and return_ds else False
|
387 |
+
ctx.seqlen_k_orig = k.shape[1]
|
388 |
+
|
389 |
+
return out if not return_softmax else (out, softmax_lse, S_dmask)
|
390 |
+
|
391 |
+
@staticmethod
|
392 |
+
def backward(ctx, dout, *args):
|
393 |
+
q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes = ctx.saved_tensors
|
394 |
+
|
395 |
+
dout = dout.contiguous()
|
396 |
+
dq, dk, dv, ds, _ = torch.ops.fa2.bwd(
|
397 |
+
dout,
|
398 |
+
q,
|
399 |
+
k,
|
400 |
+
v,
|
401 |
+
out,
|
402 |
+
softmax_lse,
|
403 |
+
None,
|
404 |
+
None,
|
405 |
+
None,
|
406 |
+
alibi_slopes,
|
407 |
+
ctx.dropout_p,
|
408 |
+
ctx.softmax_scale,
|
409 |
+
ctx.causal,
|
410 |
+
ctx.window_size_left,
|
411 |
+
ctx.window_size_right,
|
412 |
+
ctx.deterministic,
|
413 |
+
attn_bias,
|
414 |
+
ctx.bias_requires_grad,
|
415 |
+
None,
|
416 |
+
ctx.seqlen_k_orig,
|
417 |
+
None,
|
418 |
+
rng_state
|
419 |
+
)
|
420 |
+
|
421 |
+
return dq, dk, dv, None, None, None, None, None, None, None, ds, None, None
|
422 |
+
|
423 |
+
|
424 |
+
def flash_attn_qkvpacked_func(
|
425 |
+
qkv,
|
426 |
+
dropout_p=0.0,
|
427 |
+
softmax_scale=None,
|
428 |
+
causal=False,
|
429 |
+
window_size_left=-1,
|
430 |
+
window_size_right=-1, # -1 means infinite context window
|
431 |
+
alibi_slopes=None,
|
432 |
+
deterministic=False,
|
433 |
+
attn_bias=None,
|
434 |
+
return_attn_probs=False,
|
435 |
+
return_ds=False
|
436 |
+
):
|
437 |
+
"""dropout_p should be set to 0.0 during evaluation
|
438 |
+
If Q, K, V are already stacked into 1 tensor, this function will be faster than
|
439 |
+
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
|
440 |
+
of the gradients of Q, K, V.
|
441 |
+
For multi-query and grouped-query attention (MQA/GQA), please see
|
442 |
+
flash_attn_kvpacked_func and flash_attn_func.
|
443 |
+
|
444 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
445 |
+
will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
|
446 |
+
|
447 |
+
Arguments:
|
448 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim)
|
449 |
+
dropout_p: float. Dropout probability.
|
450 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
451 |
+
Default to 1 / sqrt(headdim).
|
452 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
453 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
454 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
|
455 |
+
the attention score of query i and key j.
|
456 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
457 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
458 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
459 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
460 |
+
(they might not have the right scaling).
|
461 |
+
Return:
|
462 |
+
out: (batch_size, seqlen, nheads, headdim).
|
463 |
+
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
|
464 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
465 |
+
normalization factor).
|
466 |
+
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
|
467 |
+
The output of softmax (possibly with different scaling). It also encodes the dropout
|
468 |
+
pattern (negative means that location was dropped, nonnegative means it was kept).
|
469 |
+
"""
|
470 |
+
return FlashAttnQKVPackedFunc.apply(
|
471 |
+
qkv,
|
472 |
+
dropout_p,
|
473 |
+
softmax_scale,
|
474 |
+
causal,
|
475 |
+
window_size_left,
|
476 |
+
window_size_right,
|
477 |
+
alibi_slopes,
|
478 |
+
deterministic,
|
479 |
+
attn_bias,
|
480 |
+
return_attn_probs,
|
481 |
+
return_ds
|
482 |
+
)
|
483 |
+
|
484 |
+
|
485 |
+
def flash_attn_kvpacked_func(
|
486 |
+
q,
|
487 |
+
kv,
|
488 |
+
dropout_p=0.0,
|
489 |
+
softmax_scale=None,
|
490 |
+
causal=False,
|
491 |
+
window_size_left=-1,
|
492 |
+
window_size_right=-1, # -1 means infinite context window
|
493 |
+
alibi_slopes=None,
|
494 |
+
deterministic=False,
|
495 |
+
attn_bias=None,
|
496 |
+
return_attn_probs=False,
|
497 |
+
return_ds=False
|
498 |
+
):
|
499 |
+
"""dropout_p should be set to 0.0 during evaluation
|
500 |
+
If K, V are already stacked into 1 tensor, this function will be faster than
|
501 |
+
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
|
502 |
+
of the gradients of K, V.
|
503 |
+
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
|
504 |
+
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
|
505 |
+
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
|
506 |
+
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
|
507 |
+
|
508 |
+
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
|
509 |
+
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
|
510 |
+
1 1 1 1 0
|
511 |
+
1 1 1 1 1
|
512 |
+
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
|
513 |
+
0 0
|
514 |
+
0 0
|
515 |
+
0 0
|
516 |
+
1 0
|
517 |
+
1 1
|
518 |
+
If the row of the mask is all zero, the output will be zero.
|
519 |
+
|
520 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
521 |
+
will only attend to keys between
|
522 |
+
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
|
523 |
+
|
524 |
+
Arguments:
|
525 |
+
q: (batch_size, seqlen, nheads, headdim)
|
526 |
+
kv: (batch_size, seqlen, 2, nheads_k, headdim)
|
527 |
+
dropout_p: float. Dropout probability.
|
528 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
529 |
+
Default to 1 / sqrt(headdim).
|
530 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
531 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
532 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
|
533 |
+
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
|
534 |
+
is added to the attention score of query i and key j.
|
535 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
536 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
537 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
538 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
539 |
+
(they might not have the right scaling).
|
540 |
+
Return:
|
541 |
+
out: (batch_size, seqlen, nheads, headdim).
|
542 |
+
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
|
543 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
544 |
+
normalization factor).
|
545 |
+
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
|
546 |
+
The output of softmax (possibly with different scaling). It also encodes the dropout
|
547 |
+
pattern (negative means that location was dropped, nonnegative means it was kept).
|
548 |
+
"""
|
549 |
+
return FlashAttnKVPackedFunc.apply(
|
550 |
+
q,
|
551 |
+
kv,
|
552 |
+
dropout_p,
|
553 |
+
softmax_scale,
|
554 |
+
causal,
|
555 |
+
window_size_left,
|
556 |
+
window_size_right,
|
557 |
+
alibi_slopes,
|
558 |
+
deterministic,
|
559 |
+
attn_bias,
|
560 |
+
return_attn_probs,
|
561 |
+
return_ds
|
562 |
+
)
|
563 |
+
|
564 |
+
|
565 |
+
def flash_attn_func(
|
566 |
+
q,
|
567 |
+
k,
|
568 |
+
v,
|
569 |
+
dropout_p=0.0,
|
570 |
+
softmax_scale=None,
|
571 |
+
causal=False,
|
572 |
+
window_size_left=-1,
|
573 |
+
window_size_right=-1, # -1 means infinite context window
|
574 |
+
alibi_slopes=None,
|
575 |
+
deterministic=False,
|
576 |
+
attn_bias=None,
|
577 |
+
return_attn_probs=False,
|
578 |
+
return_ds=False
|
579 |
+
):
|
580 |
+
"""dropout_p should be set to 0.0 during evaluation
|
581 |
+
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
|
582 |
+
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
|
583 |
+
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
|
584 |
+
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
|
585 |
+
|
586 |
+
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
|
587 |
+
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
|
588 |
+
1 1 1 1 0
|
589 |
+
1 1 1 1 1
|
590 |
+
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
|
591 |
+
0 0
|
592 |
+
0 0
|
593 |
+
0 0
|
594 |
+
1 0
|
595 |
+
1 1
|
596 |
+
If the row of the mask is all zero, the output will be zero.
|
597 |
+
|
598 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
599 |
+
will only attend to keys between
|
600 |
+
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
|
601 |
+
|
602 |
+
Arguments:
|
603 |
+
q: (batch_size, seqlen, nheads, headdim)
|
604 |
+
k: (batch_size, seqlen, nheads_k, headdim)
|
605 |
+
v: (batch_size, seqlen, nheads_k, headdim)
|
606 |
+
dropout_p: float. Dropout probability.
|
607 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
608 |
+
Default to 1 / sqrt(headdim).
|
609 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
610 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
611 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
|
612 |
+
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
|
613 |
+
is added to the attention score of query i and key j.
|
614 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
615 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
616 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
617 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
618 |
+
(they might not have the right scaling).
|
619 |
+
Return:
|
620 |
+
out: (batch_size, seqlen, nheads, headdim).
|
621 |
+
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
|
622 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
623 |
+
normalization factor).
|
624 |
+
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
|
625 |
+
The output of softmax (possibly with different scaling). It also encodes the dropout
|
626 |
+
pattern (negative means that location was dropped, nonnegative means it was kept).
|
627 |
+
"""
|
628 |
+
return FlashAttnFunc.apply(
|
629 |
+
q,
|
630 |
+
k,
|
631 |
+
v,
|
632 |
+
dropout_p,
|
633 |
+
softmax_scale,
|
634 |
+
causal,
|
635 |
+
window_size_left,
|
636 |
+
window_size_right,
|
637 |
+
alibi_slopes,
|
638 |
+
deterministic,
|
639 |
+
attn_bias,
|
640 |
+
return_attn_probs,
|
641 |
+
return_ds,
|
642 |
+
)
|
flash_attention_v2_bias.py
ADDED
@@ -0,0 +1,859 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 BAAI
|
2 |
+
# Copyright 2024 CATIE
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
# Modifications to the orignal file
|
17 |
+
# - Support for biases following https://github.com/FlagOpen/FlagAttention/pull/5
|
18 |
+
# - Support for shape (1,1,q,k) biases
|
19 |
+
|
20 |
+
import math
|
21 |
+
import torch
|
22 |
+
import triton
|
23 |
+
import triton.language as tl
|
24 |
+
|
25 |
+
# Wrapper for triton kernel for torch.compile - should be unecessary for PyTorch 2.3 ?
|
26 |
+
torch.library.define("flasht5::flash_attn_v2_fwd", "(Tensor q, Tensor k, Tensor v, Tensor bias, bool causal, float sm_scale, int BLOCK_M, int BLOCK_N, int num_warps, int num_stages) -> (Tensor, Tensor)")
|
27 |
+
|
28 |
+
@torch.library.impl("flasht5::flash_attn_v2_fwd", "default")
|
29 |
+
def flash_attn_v2_fwd(q, k, v, bias, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):
|
30 |
+
|
31 |
+
B, H, M, D = q.shape
|
32 |
+
N = k.shape[2]
|
33 |
+
P_SEQ = N - M
|
34 |
+
larger_m = M > N
|
35 |
+
|
36 |
+
# Trick to support shape such as (1, 1, seqlen_q, seqlen_k)
|
37 |
+
bias_batch_stride = bias.stride(0) if bias is not None else 0
|
38 |
+
bias_heads_stride = bias.stride(1) if bias is not None else 0
|
39 |
+
if bias is not None:
|
40 |
+
if (bias.shape[0] != q.shape[0]) and (bias.shape[0] == 1):
|
41 |
+
bias_batch_stride = 0
|
42 |
+
if (bias.shape[1] != q.shape[1]) and (bias.shape[1] == 1):
|
43 |
+
bias_heads_stride = 0
|
44 |
+
|
45 |
+
divisible_m = M % BLOCK_M == 0
|
46 |
+
divisible_n = N % BLOCK_N == 0
|
47 |
+
# consider using 3d grid to avoid div & rem
|
48 |
+
grid = (triton.cdiv(M, BLOCK_M), H, B)
|
49 |
+
o = torch.empty_like(q)
|
50 |
+
L = torch.empty((B, H, M), device=q.device, dtype=torch.float32)
|
51 |
+
|
52 |
+
_fwd_kernel[grid](
|
53 |
+
q, k, v, bias, sm_scale,
|
54 |
+
L, o,
|
55 |
+
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
|
56 |
+
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
|
57 |
+
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
|
58 |
+
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
|
59 |
+
bias_batch_stride, bias_heads_stride,
|
60 |
+
bias.stride(2) if bias is not None else 0,
|
61 |
+
bias.stride(3) if bias is not None else 0,
|
62 |
+
B, H, M, N, P_SEQ,
|
63 |
+
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_DMODEL=D,
|
64 |
+
IS_CAUSAL=causal, LARGER_M=larger_m,
|
65 |
+
DIVISIBLE_M=divisible_m, DIVISIBLE_N=divisible_n,
|
66 |
+
HAS_BIAS=(bias is not None),
|
67 |
+
num_warps=num_warps, num_stages=num_stages,
|
68 |
+
)
|
69 |
+
|
70 |
+
return o, L
|
71 |
+
|
72 |
+
|
73 |
+
@torch.library.impl_abstract("flasht5::flash_attn_v2_fwd", flash_attn_v2_fwd)
|
74 |
+
def flash_attn_v2_fwd_abstract(q, k, v, bias, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):
|
75 |
+
B, H, M, D = q.shape
|
76 |
+
o = torch.empty_like(q)
|
77 |
+
L = torch.empty((B, H, M), dtype=torch.float32, device=q.device)
|
78 |
+
|
79 |
+
return o, L
|
80 |
+
|
81 |
+
torch.library.define("flasht5::flash_attn_v2_bwd", "(Tensor o, Tensor do, Tensor q, Tensor k, Tensor v, Tensor bias, Tensor L, bool causal, float sm_scale, int BLOCK_M, int BLOCK_N, int num_warps, int num_stages) -> (Tensor, Tensor, Tensor, Tensor)")
|
82 |
+
|
83 |
+
@torch.library.impl("flasht5::flash_attn_v2_bwd", "default")
|
84 |
+
def flash_attn_v2_bwd(o, do, q, k, v, bias, L, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):
|
85 |
+
|
86 |
+
B, H, M, D = q.shape
|
87 |
+
N = k.shape[2]
|
88 |
+
P_SEQ = N - M
|
89 |
+
larger_m = M > N
|
90 |
+
|
91 |
+
divisible_m = M % BLOCK_M == 0
|
92 |
+
divisible_n = N % BLOCK_N == 0
|
93 |
+
|
94 |
+
# Trick to support shape such as (1, 1, seqlen_q, seqlen_k)
|
95 |
+
bias_batch_stride = bias.stride(0) if bias is not None else 0
|
96 |
+
bias_heads_stride = bias.stride(1) if bias is not None else 0
|
97 |
+
if bias is not None:
|
98 |
+
if (bias.shape[0] != q.shape[0]) and (bias.shape[0] == 1):
|
99 |
+
bias_batch_stride = 0
|
100 |
+
if (bias.shape[1] != q.shape[1]) and (bias.shape[1] == 1):
|
101 |
+
bias_heads_stride = 0
|
102 |
+
|
103 |
+
delta = torch.empty_like(L)
|
104 |
+
grid = (triton.cdiv(M, BLOCK_M), H, B)
|
105 |
+
|
106 |
+
_bwd_preprocess[grid](
|
107 |
+
o, do,
|
108 |
+
delta,
|
109 |
+
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
|
110 |
+
do.stride(0), do.stride(1), do.stride(2), do.stride(3),
|
111 |
+
delta.stride(0), delta.stride(1), delta.stride(2),
|
112 |
+
M,
|
113 |
+
BLOCK_M=BLOCK_M, D_HEAD=D,
|
114 |
+
DIVISIBLE_M=divisible_m,
|
115 |
+
)
|
116 |
+
|
117 |
+
dk = torch.empty_like(k)
|
118 |
+
dv = torch.empty_like(v)
|
119 |
+
|
120 |
+
HAS_BIAS = bias is not None
|
121 |
+
RETURN_DS = HAS_BIAS
|
122 |
+
USE_DS_ATOMIC_ADD = (bias_batch_stride == 0) or (bias_heads_stride == 0)
|
123 |
+
ds = None
|
124 |
+
if RETURN_DS:
|
125 |
+
ds = torch.empty_like(bias)
|
126 |
+
if USE_DS_ATOMIC_ADD:
|
127 |
+
ds = ds.zero_()
|
128 |
+
|
129 |
+
grid = (triton.cdiv(N, BLOCK_N), H, B)
|
130 |
+
_bwd_kv_kernel[grid](
|
131 |
+
q, k, v, bias, sm_scale, do,
|
132 |
+
dk, dv, ds,
|
133 |
+
L, delta,
|
134 |
+
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
|
135 |
+
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
|
136 |
+
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
|
137 |
+
bias_batch_stride, bias_heads_stride,
|
138 |
+
bias.stride(2) if HAS_BIAS else 0,
|
139 |
+
bias.stride(3) if HAS_BIAS else 0,
|
140 |
+
do.stride(0), do.stride(1), do.stride(2), do.stride(3),
|
141 |
+
dk.stride(0), dk.stride(1), dk.stride(2), dk.stride(3),
|
142 |
+
dv.stride(0), dv.stride(1), dv.stride(2), dv.stride(3),
|
143 |
+
B, H, M, N, P_SEQ,
|
144 |
+
BLOCK_M=BLOCK_M, BLOCK_DMODEL=D, BLOCK_N=BLOCK_N, CAUSAL=causal,
|
145 |
+
DIVISIBLE_M=divisible_m, DIVISIBLE_N=divisible_n,
|
146 |
+
HAS_BIAS=HAS_BIAS,
|
147 |
+
RETURN_DS=RETURN_DS, USE_DS_ATOMIC_ADD=USE_DS_ATOMIC_ADD,
|
148 |
+
num_stages=num_stages, num_warps=num_warps,
|
149 |
+
)
|
150 |
+
|
151 |
+
dq = torch.empty_like(q)
|
152 |
+
grid = (triton.cdiv(M, BLOCK_M), H, B)
|
153 |
+
_bwd_q_kernel[grid](
|
154 |
+
q, k, v, bias, sm_scale, do,
|
155 |
+
dq,
|
156 |
+
L, delta,
|
157 |
+
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
|
158 |
+
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
|
159 |
+
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
|
160 |
+
bias_batch_stride, bias_heads_stride,
|
161 |
+
bias.stride(2) if HAS_BIAS else 0,
|
162 |
+
bias.stride(3) if HAS_BIAS else 0,
|
163 |
+
do.stride(0), do.stride(1), do.stride(2), do.stride(3),
|
164 |
+
dq.stride(0), dq.stride(1), dq.stride(2), dq.stride(3),
|
165 |
+
B, H, M, N, P_SEQ,
|
166 |
+
BLOCK_M=BLOCK_M, BLOCK_DMODEL=D, BLOCK_N=BLOCK_N,
|
167 |
+
CAUSAL=causal, LARGER_M=larger_m,
|
168 |
+
DIVISIBLE_M=divisible_m, DIVISIBLE_N=divisible_n,
|
169 |
+
HAS_BIAS=HAS_BIAS,
|
170 |
+
num_stages=num_stages, num_warps = num_warps,
|
171 |
+
)
|
172 |
+
|
173 |
+
return dq, dk, dv, ds
|
174 |
+
|
175 |
+
@torch.library.impl_abstract("flasht5::flash_attn_v2_bwd", flash_attn_v2_bwd)
|
176 |
+
def cross_entropy_triton_bwd_abstract(o, do, q, k, v, bias, L, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):
|
177 |
+
dq = torch.empty_like(q)
|
178 |
+
dk = torch.empty_like(k)
|
179 |
+
dv = torch.empty_like(v)
|
180 |
+
ds = torch.empty_like(bias) if bias is not None else None
|
181 |
+
|
182 |
+
return dq, dk, dv, ds
|
183 |
+
|
184 |
+
class FlashAttention(torch.autograd.Function):
|
185 |
+
@staticmethod
|
186 |
+
def forward(ctx, q, k, v, bias, causal, sm_scale):
|
187 |
+
Dq, Dk, Dv = q.shape[-1], k.shape[-1], v.shape[-1]
|
188 |
+
|
189 |
+
assert Dq == Dk == Dv
|
190 |
+
assert Dk in {16, 32, 64, 128}
|
191 |
+
|
192 |
+
B, H, M, D = q.shape
|
193 |
+
N = k.shape[2]
|
194 |
+
|
195 |
+
if sm_scale is None:
|
196 |
+
sm_scale = 1. / math.sqrt(D)
|
197 |
+
|
198 |
+
config = get_fwd_config(B, H, M, N, D, causal)
|
199 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = config
|
200 |
+
|
201 |
+
o, L = torch.ops.flasht5.flash_attn_v2_fwd(q, k, v, bias, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages)
|
202 |
+
|
203 |
+
# autograd context maintenance
|
204 |
+
ctx.save_for_backward(q, k, v, bias, o, L)
|
205 |
+
ctx.sm_scale = sm_scale
|
206 |
+
ctx.causal = causal
|
207 |
+
|
208 |
+
return o
|
209 |
+
|
210 |
+
@staticmethod
|
211 |
+
def backward(ctx, do, *ignored):
|
212 |
+
q, k, v, bias, o, L = ctx.saved_tensors
|
213 |
+
sm_scale = ctx.sm_scale
|
214 |
+
causal = ctx.causal
|
215 |
+
|
216 |
+
B, H, M, D = q.shape
|
217 |
+
N = k.shape[2]
|
218 |
+
|
219 |
+
if sm_scale is None:
|
220 |
+
sm_scale = 1. / math.sqrt(D)
|
221 |
+
|
222 |
+
config = get_bwd_config(B, H, M, N, D, causal)
|
223 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = config
|
224 |
+
|
225 |
+
dq, dk, dv, ds = torch.ops.flasht5.flash_attn_v2_bwd(o, do, q, k, v, bias, L, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages)
|
226 |
+
|
227 |
+
return dq, dk, dv, ds, None, None, None, None
|
228 |
+
|
229 |
+
|
230 |
+
def attention(q, k, v, bias, causal=False, sm_scale=None):
|
231 |
+
"""
|
232 |
+
An implementation of FlashAttention v2(https://arxiv.org/abs/2307.08691).
|
233 |
+
|
234 |
+
Arguments:
|
235 |
+
q(torch.Tensor): The first queries. The shape is (batch_size, nheads, seqlen_q, headdim).
|
236 |
+
k(torch.Tensor): The first keys. The shape is (batch_size, nheads, seqlen_k, headdim).
|
237 |
+
v(torch.Tensor): The values. The shape is (batch_size, nheads, seqlen_k, headdim).
|
238 |
+
causal(bool): Whether causal masking is applied to attention scores before applying softmax.
|
239 |
+
sm_scale(float): The scaling of attention scores before applying softmax.
|
240 |
+
|
241 |
+
Returns:
|
242 |
+
out(torch.Tensor): The output. The shape is (batch_size, nheads, seqlen_q, headdim).
|
243 |
+
"""
|
244 |
+
return FlashAttention.apply(q, k, v, bias, causal, sm_scale)
|
245 |
+
|
246 |
+
|
247 |
+
# --------------------------- Forward ---------------------------
|
248 |
+
# NOTE: this function can be overwritten at runtime to use your custom config
|
249 |
+
def get_fwd_config(B, H, M, N, D, causal):
|
250 |
+
if torch.cuda.get_device_capability() == (8, 0):
|
251 |
+
if not causal:
|
252 |
+
if D <= 64:
|
253 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 64, 3, 4
|
254 |
+
else:
|
255 |
+
if M <= 1024:
|
256 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 3, 4
|
257 |
+
else:
|
258 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 128, 3, 8
|
259 |
+
else:
|
260 |
+
if D <= 64:
|
261 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 64, 4, 4
|
262 |
+
else:
|
263 |
+
if M <= 1024:
|
264 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 2, 4
|
265 |
+
else:
|
266 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 128, 3, 8
|
267 |
+
elif torch.cuda.get_device_capability() == (8, 6):
|
268 |
+
if not causal:
|
269 |
+
if D <= 64:
|
270 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 64, 3, 4
|
271 |
+
else:
|
272 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 2, 4
|
273 |
+
else: # causal
|
274 |
+
if D <= 64:
|
275 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 3, 4
|
276 |
+
else:
|
277 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 2, 4
|
278 |
+
else:
|
279 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 32, 32, 1, 4
|
280 |
+
return (BLOCK_M, BLOCK_N, num_stages, num_warps)
|
281 |
+
|
282 |
+
|
283 |
+
@triton.jit
|
284 |
+
def _fwd_kernel(
|
285 |
+
Q, K, V, B, sm_scale,
|
286 |
+
L, O,
|
287 |
+
stride_qz, stride_qh, stride_qm, stride_qk,
|
288 |
+
stride_kz, stride_kh, stride_kn, stride_kk,
|
289 |
+
stride_vz, stride_vh, stride_vn, stride_vk,
|
290 |
+
stride_oz, stride_oh, stride_om, stride_ok,
|
291 |
+
stride_bz, stride_bh, stride_bm, stride_bn,
|
292 |
+
Z, H, M, N, P_SEQ,
|
293 |
+
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
|
294 |
+
IS_CAUSAL: tl.constexpr, LARGER_M: tl.constexpr,
|
295 |
+
DIVISIBLE_M: tl.constexpr, DIVISIBLE_N: tl.constexpr,
|
296 |
+
HAS_BIAS: tl.constexpr,
|
297 |
+
):
|
298 |
+
input_dtype = Q.dtype.element_ty
|
299 |
+
# -- grid id --
|
300 |
+
start_m = tl.program_id(0)
|
301 |
+
off_h = tl.program_id(1)
|
302 |
+
off_z = tl.program_id(2)
|
303 |
+
|
304 |
+
# scale sm_scale by log_2(e) and use
|
305 |
+
# 2^x instead of exp in the loop because CSE and LICM
|
306 |
+
# don't work as expected with `exp` in the loop
|
307 |
+
log2e: tl.constexpr = 1.4426950408889634
|
308 |
+
|
309 |
+
# offset pointers for (batch, head)
|
310 |
+
Q += off_z * stride_qz + off_h * stride_qh
|
311 |
+
K += off_z * stride_kz + off_h * stride_kh
|
312 |
+
V += off_z * stride_vz + off_h * stride_vh
|
313 |
+
O += off_z * stride_oz + off_h * stride_oh
|
314 |
+
if HAS_BIAS:
|
315 |
+
B += off_z * stride_bz + off_h * stride_bh
|
316 |
+
L += (off_z * H + off_h) * M # l's shape is (B, H, M)
|
317 |
+
|
318 |
+
offs_m_base = tl.arange(0, BLOCK_M)
|
319 |
+
offs_m = start_m * BLOCK_M + offs_m_base
|
320 |
+
offs_n_base = tl.arange(0, BLOCK_N)
|
321 |
+
offs_k = tl.arange(0, BLOCK_DMODEL)
|
322 |
+
|
323 |
+
# initialize pointers to value-like data
|
324 |
+
q_ptrs = Q + (offs_m[:, None] * stride_qm + offs_k[None, :] * stride_qk) # (BLOCK_M, BLOCK_DMODEL)
|
325 |
+
o_ptrs = O + (offs_m[:, None] * stride_om + offs_k[None, :] * stride_ok) # (BLOCK_M, BLOCK_DMODEL)
|
326 |
+
l_ptrs = L + offs_m
|
327 |
+
|
328 |
+
# initialize pointer to m and l, fp32 for accumulators
|
329 |
+
m_i = tl.full([BLOCK_M], value=-float("inf"), dtype=tl.float32)
|
330 |
+
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
331 |
+
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
332 |
+
|
333 |
+
# load q
|
334 |
+
mask_m = offs_m < M
|
335 |
+
if DIVISIBLE_M:
|
336 |
+
q = tl.load(q_ptrs, cache_modifier=".cg")
|
337 |
+
else:
|
338 |
+
q = tl.load(q_ptrs, mask=mask_m[:, None], cache_modifier=".cg")
|
339 |
+
|
340 |
+
#Dot I trick: to place q in registers, it saves shared memory
|
341 |
+
if BLOCK_DMODEL < 128:
|
342 |
+
I = tl.where(offs_k[:, None] == offs_k,
|
343 |
+
tl.full((BLOCK_DMODEL, BLOCK_DMODEL), 1.0, dtype=input_dtype),
|
344 |
+
tl.full((BLOCK_DMODEL, BLOCK_DMODEL), 0.0, dtype=input_dtype))
|
345 |
+
q = tl.dot(q, I).to(input_dtype)
|
346 |
+
# else:
|
347 |
+
# I = tl.where(offs_m_base[:, None] == offs_m_base,
|
348 |
+
# tl.full((BLOCK_M, BLOCK_M), 1.0, dtype=input_dtype),
|
349 |
+
# tl.full((BLOCK_M, BLOCK_M), 0.0, dtype=input_dtype))
|
350 |
+
# q = tl.dot(I, q).to(input_dtype)
|
351 |
+
|
352 |
+
# NOTE: Loop-Bound-For-N
|
353 |
+
# The indices in m-dimension that this block may access is in `[start_m * BLOCK_M, (start_m + 1) * BLOCK_M)`.
|
354 |
+
# According to the rule of causal masking, then max index in n-dimension that this block may access
|
355 |
+
# is `P_SEQ + (start_m + 1) * BLOCK_M`.
|
356 |
+
# However, the upper bound of index in n-dimension should never exceed the sequence length of k/v(`P_SEQ + N_CTX`).
|
357 |
+
# `P_SEQ + (start_m + 1) * BLOCK_M` may be larger than `N`.
|
358 |
+
# At this case, there would be illegal memory access when loading k & v tiles
|
359 |
+
# if mask_n is not applied for loading(only when `DIVISIBLE_N`` is true).
|
360 |
+
# See also https://github.com/FlagOpen/FlagAttention/pull/8
|
361 |
+
if IS_CAUSAL:
|
362 |
+
hi = tl.minimum(N, P_SEQ + (start_m + 1) * BLOCK_M)
|
363 |
+
if LARGER_M:
|
364 |
+
hi = tl.maximum(0, hi)
|
365 |
+
else:
|
366 |
+
hi = N
|
367 |
+
|
368 |
+
# loop over k, v and update accumulators
|
369 |
+
offs_n_init = offs_n_base
|
370 |
+
k_ptrs = K + (offs_k[:, None] * stride_vk + offs_n_init[None, :] * stride_vn) # (BLOCK_DMODEL, BLOCK_N)
|
371 |
+
v_ptrs = V + (offs_n_init[:, None] * stride_kn + offs_k[None, :] * stride_kk) # (BLOCK_N, BLOCK_DMODEL)
|
372 |
+
if HAS_BIAS:
|
373 |
+
bias_ptrs = B + (offs_m[:, None] * stride_bm + offs_n_init[None, :] * stride_bn) # (BLOCK_M, BLOCK_N)
|
374 |
+
|
375 |
+
for start_n in range(0, hi, BLOCK_N):
|
376 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
377 |
+
offs_n = start_n + offs_n_base
|
378 |
+
|
379 |
+
# -- load k, v --
|
380 |
+
mask_n = offs_n < N
|
381 |
+
if DIVISIBLE_N:
|
382 |
+
k = tl.load(k_ptrs, cache_modifier=".cg")
|
383 |
+
v = tl.load(v_ptrs, cache_modifier=".cg")
|
384 |
+
else:
|
385 |
+
k = tl.load(k_ptrs, mask=mask_n[None, :], cache_modifier=".cg")
|
386 |
+
v = tl.load(v_ptrs, mask=mask_n[:, None], cache_modifier=".cg")
|
387 |
+
|
388 |
+
# -- load bias --
|
389 |
+
if HAS_BIAS:
|
390 |
+
if DIVISIBLE_M and DIVISIBLE_N:
|
391 |
+
b = tl.load(bias_ptrs)
|
392 |
+
else:
|
393 |
+
b = tl.load(bias_ptrs, mask_m[:, None] & mask_n[None, :])
|
394 |
+
|
395 |
+
# -- compute qk ---
|
396 |
+
s = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
397 |
+
s += tl.dot(q, k) * sm_scale
|
398 |
+
if HAS_BIAS:
|
399 |
+
s += b
|
400 |
+
|
401 |
+
if not DIVISIBLE_N:
|
402 |
+
s = tl.where(mask_n[None, :], s, float("-inf"))
|
403 |
+
if IS_CAUSAL:
|
404 |
+
causal_mask = (P_SEQ + offs_m[:, None]) >= offs_n[None, :]
|
405 |
+
s = tl.where(causal_mask, s, float("-inf"))
|
406 |
+
|
407 |
+
# -- compute scaling constant ---
|
408 |
+
m_i_new = tl.maximum(m_i, tl.max(s, 1))
|
409 |
+
alpha = tl.math.exp2((m_i - m_i_new)*log2e)
|
410 |
+
p = tl.math.exp2((s - m_i_new[:, None])*log2e)
|
411 |
+
|
412 |
+
# -- scale and update acc: acc *= alpha[:, None]--
|
413 |
+
acc *= alpha[:, None]
|
414 |
+
acc += tl.dot(p.to(input_dtype), v)
|
415 |
+
|
416 |
+
# -- update m_i and l_i --
|
417 |
+
l_i = l_i * alpha + tl.sum(p, 1)
|
418 |
+
m_i = m_i_new
|
419 |
+
# update pointers
|
420 |
+
k_ptrs += BLOCK_N * stride_kn
|
421 |
+
v_ptrs += BLOCK_N * stride_vn
|
422 |
+
if HAS_BIAS:
|
423 |
+
bias_ptrs += BLOCK_N * stride_bn
|
424 |
+
|
425 |
+
# write back l & o
|
426 |
+
if IS_CAUSAL and LARGER_M:
|
427 |
+
is_empty_line = (offs_m + P_SEQ) < 0
|
428 |
+
acc = tl.where(is_empty_line[:, None], 0.0, acc * (1.0 / l_i[:, None]))
|
429 |
+
l = tl.where(is_empty_line, float("-inf"), m_i + tl.log(l_i))
|
430 |
+
else:
|
431 |
+
acc = acc * (1.0 / l_i[:, None])
|
432 |
+
l = m_i + tl.log(l_i) # log(normalizer)
|
433 |
+
|
434 |
+
if DIVISIBLE_M:
|
435 |
+
tl.store(l_ptrs, l, cache_modifier=".cg")
|
436 |
+
tl.store(o_ptrs, acc.to(input_dtype), cache_modifier=".cg")
|
437 |
+
else:
|
438 |
+
tl.store(l_ptrs, l, mask=mask_m, cache_modifier=".cg")
|
439 |
+
tl.store(o_ptrs, acc.to(input_dtype), mask=mask_m[:, None], cache_modifier=".cg")
|
440 |
+
|
441 |
+
|
442 |
+
# --------------------------- Backward ---------------------------
|
443 |
+
# NOTE: this function can be overwritten at runtime to use your custom config
|
444 |
+
def get_bwd_config(B, H, M, N, D, causal):
|
445 |
+
if torch.cuda.get_device_capability() == (8, 0):
|
446 |
+
if not causal:
|
447 |
+
BLOCK_M = 128 if D <= 64 else 64
|
448 |
+
BLOCK_N = 64
|
449 |
+
num_stages = 2
|
450 |
+
num_warps = 4
|
451 |
+
else:
|
452 |
+
BLOCK_M = 64
|
453 |
+
BLOCK_N = 64
|
454 |
+
num_stages = 3 if D <= 64 else 2
|
455 |
+
num_warps = 4
|
456 |
+
elif torch.cuda.get_device_capability() == (8, 6): # tune for RTX-3090, device_capability(8, 6)
|
457 |
+
if not causal:
|
458 |
+
if D <= 64:
|
459 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 2, 4
|
460 |
+
else:
|
461 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 2, 8
|
462 |
+
else:
|
463 |
+
if D <= 64:
|
464 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 2, 4
|
465 |
+
else:
|
466 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 32, 32, 2, 4
|
467 |
+
else:
|
468 |
+
BLOCK_M, BLOCK_N, num_stages, num_warps = 32, 32, 1, 4
|
469 |
+
return (BLOCK_M, BLOCK_N, num_stages, num_warps)
|
470 |
+
|
471 |
+
|
472 |
+
@triton.jit
|
473 |
+
def _bwd_preprocess(
|
474 |
+
Out, DO,
|
475 |
+
Delta,
|
476 |
+
stride_oz, stride_oh, stride_om, stride_ok,
|
477 |
+
stride_doz, stride_doh, stride_dom, stride_dok,
|
478 |
+
stride_dz, stride_dh, stride_dm,
|
479 |
+
M,
|
480 |
+
BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr,
|
481 |
+
DIVISIBLE_M: tl.constexpr,
|
482 |
+
):
|
483 |
+
off_h = tl.program_id(1)
|
484 |
+
off_z = tl.program_id(2)
|
485 |
+
Out += off_z * stride_oz + off_h * stride_oh
|
486 |
+
DO += off_z * stride_doz + off_h * stride_doh
|
487 |
+
Delta += off_z * stride_dz + off_h * stride_dh
|
488 |
+
|
489 |
+
# compute (Out * Dout).sum() for vector interpretation
|
490 |
+
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
|
491 |
+
off_n = tl.arange(0, D_HEAD)
|
492 |
+
|
493 |
+
# load
|
494 |
+
o_ptrs = Out + off_m[:, None] * stride_om + off_n[None, :] * stride_ok
|
495 |
+
do_ptrs = DO + off_m[:, None] * stride_dom + off_n[None, :] * stride_dok
|
496 |
+
|
497 |
+
if DIVISIBLE_M:
|
498 |
+
o = tl.load(o_ptrs).to(tl.float32)
|
499 |
+
do = tl.load(do_ptrs).to(tl.float32)
|
500 |
+
else:
|
501 |
+
mask_m = off_m < M
|
502 |
+
o = tl.load(o_ptrs, mask=mask_m[:, None]).to(tl.float32)
|
503 |
+
do = tl.load(do_ptrs, mask=mask_m[:, None]).to(tl.float32)
|
504 |
+
|
505 |
+
# compute
|
506 |
+
delta = tl.sum(o * do, axis=1)
|
507 |
+
# write-back
|
508 |
+
d_ptrs = Delta + off_m * stride_dm
|
509 |
+
if DIVISIBLE_M:
|
510 |
+
tl.store(d_ptrs, delta)
|
511 |
+
else:
|
512 |
+
tl.store(d_ptrs, delta, mask=mask_m)
|
513 |
+
|
514 |
+
|
515 |
+
@triton.jit
|
516 |
+
def _bwd_kv_kernel(
|
517 |
+
Q, K, V, B, sm_scale, DO,
|
518 |
+
DK, DV, DS,
|
519 |
+
L,
|
520 |
+
D,
|
521 |
+
stride_qz, stride_qh, stride_qm, stride_qk,
|
522 |
+
stride_kz, stride_kh, stride_kn, stride_kk,
|
523 |
+
stride_vz, stride_vh, stride_vn, stride_vk,
|
524 |
+
stride_bz, stride_bh, stride_bm, stride_bn,
|
525 |
+
stride_doz, stride_doh, stride_dom, stride_dok,
|
526 |
+
stride_dkz, stride_dkh, stride_dkn, stride_dkk,
|
527 |
+
stride_dvz, stride_dvh, stride_dvn, stride_dvk,
|
528 |
+
Z, H, M, N, P_SEQ,
|
529 |
+
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
|
530 |
+
CAUSAL: tl.constexpr,
|
531 |
+
DIVISIBLE_M: tl.constexpr, DIVISIBLE_N: tl.constexpr,
|
532 |
+
HAS_BIAS: tl.constexpr,
|
533 |
+
RETURN_DS: tl.constexpr, USE_DS_ATOMIC_ADD: tl.constexpr,
|
534 |
+
):
|
535 |
+
input_dtype = Q.dtype.element_ty
|
536 |
+
# -- grid id --
|
537 |
+
start_n = tl.program_id(0)
|
538 |
+
off_h = tl.program_id(1)
|
539 |
+
off_z = tl.program_id(2)
|
540 |
+
log2e: tl.constexpr = 1.4426950408889634
|
541 |
+
qk_scale = sm_scale * log2e
|
542 |
+
|
543 |
+
# offset pointers for (batch, head)
|
544 |
+
Q += off_z * stride_qz + off_h * stride_qh
|
545 |
+
K += off_z * stride_kz + off_h * stride_kh
|
546 |
+
V += off_z * stride_vz + off_h * stride_vh
|
547 |
+
if HAS_BIAS:
|
548 |
+
B += off_z * stride_bz + off_h * stride_bh
|
549 |
+
DO += off_z * stride_doz + off_h * stride_doh
|
550 |
+
|
551 |
+
# offset pointers for batch/head
|
552 |
+
DK += off_z * stride_dkz + off_h * stride_dkh
|
553 |
+
DV += off_z * stride_dvz + off_h * stride_dvh
|
554 |
+
if RETURN_DS:
|
555 |
+
DS += off_z * stride_bz + off_h * stride_bh
|
556 |
+
|
557 |
+
# offset pointers for batch/head
|
558 |
+
D += (off_z * H + off_h) * M
|
559 |
+
L += (off_z * H + off_h) * M
|
560 |
+
|
561 |
+
if CAUSAL:
|
562 |
+
lo = tl.maximum(start_n * BLOCK_N - P_SEQ, 0)
|
563 |
+
lo = (lo // BLOCK_M) * BLOCK_M
|
564 |
+
else:
|
565 |
+
lo = 0
|
566 |
+
|
567 |
+
offs_m_init = lo + tl.arange(0, BLOCK_M)
|
568 |
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
569 |
+
offs_m_base = tl.arange(0, BLOCK_M)
|
570 |
+
offs_k = tl.arange(0, BLOCK_DMODEL)
|
571 |
+
|
572 |
+
# initialize pointers to value-like data
|
573 |
+
q_ptrs = Q + (offs_m_init[:, None] * stride_qm + offs_k[None, :] * stride_qk) # (BLOCK_M, BLOCK_DMODEL)
|
574 |
+
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) # (BLOCK_N, BLOCK_DMODEL)
|
575 |
+
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_k[None, :] * stride_vk) # (BLOCK_N, BLOCK_DMODEL)
|
576 |
+
do_ptrs = DO + (offs_m_init[:, None] * stride_dom + offs_k[None, :] * stride_dok) # (BLOCK_M, BLOCK_DMODEL)
|
577 |
+
|
578 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_k[None, :] * stride_dvk) # (BLOCK_N, BLOCK_DMODEL)
|
579 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_k[None, :] * stride_dkk) # (BLOCK_N, BLOCK_DMODEL)
|
580 |
+
|
581 |
+
if HAS_BIAS:
|
582 |
+
bias_ptrs = B + (offs_m_init[:, None] * stride_bm + offs_n[None, :] * stride_bn)
|
583 |
+
|
584 |
+
if RETURN_DS:
|
585 |
+
ds_ptrs = DS + (offs_m_init[:, None] * stride_bm + offs_n[None, :] * stride_bn)
|
586 |
+
|
587 |
+
# k and v stay in SRAM throughout
|
588 |
+
mask_n = offs_n < N
|
589 |
+
if DIVISIBLE_N:
|
590 |
+
v = tl.load(v_ptrs)
|
591 |
+
k = tl.load(k_ptrs)
|
592 |
+
else:
|
593 |
+
v = tl.load(v_ptrs, mask=mask_n[:, None])
|
594 |
+
k = tl.load(k_ptrs, mask=mask_n[:, None])
|
595 |
+
|
596 |
+
# initialize dk amd dv
|
597 |
+
dk = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
|
598 |
+
dv = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
|
599 |
+
|
600 |
+
# loop over a col
|
601 |
+
for start_m in range(lo, M, BLOCK_M):
|
602 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
603 |
+
offs_m = start_m + offs_m_base
|
604 |
+
causal_mask = (P_SEQ + offs_m[:, None]) >= (offs_n[None, :]) # (BLOCK_M, BLOCK_N)
|
605 |
+
|
606 |
+
# load q1, k1, q2, k2, v, do on-chip
|
607 |
+
mask_m = offs_m < M
|
608 |
+
if DIVISIBLE_M:
|
609 |
+
q = tl.load(q_ptrs)
|
610 |
+
else:
|
611 |
+
valid_mask = mask_m[:, None] # & mask_n
|
612 |
+
q = tl.load(q_ptrs, mask=mask_m[:, None])
|
613 |
+
|
614 |
+
# load bias
|
615 |
+
if HAS_BIAS:
|
616 |
+
if DIVISIBLE_M and DIVISIBLE_N:
|
617 |
+
b = tl.load(bias_ptrs)
|
618 |
+
else:
|
619 |
+
b = tl.load(bias_ptrs, mask=mask_m[:, None] & mask_n[None, :])
|
620 |
+
|
621 |
+
# recompute p = softmax(qk * sm_scale, dim=-1)
|
622 |
+
s = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
623 |
+
s += tl.dot(q, tl.trans(k)) * sm_scale
|
624 |
+
|
625 |
+
if HAS_BIAS:
|
626 |
+
s += b
|
627 |
+
|
628 |
+
# NOTE: since softmax in backward is pointwise, the normalizer has been saved in fwd)
|
629 |
+
# So masking on s is not needed.
|
630 |
+
# s = tl.where(valid_mask, s , float("-inf"))
|
631 |
+
# if CAUSAL:
|
632 |
+
# s = tl.where(causal_mask, s, float("-inf"))
|
633 |
+
|
634 |
+
# -- recompute p ---
|
635 |
+
if DIVISIBLE_M:
|
636 |
+
l = tl.load(L + offs_m)
|
637 |
+
else:
|
638 |
+
l = tl.load(L + offs_m, mask=mask_m)
|
639 |
+
p = tl.math.exp2((s - l[:, None])*log2e) # (BLOCK_M, BLOCK_N)
|
640 |
+
|
641 |
+
if not DIVISIBLE_M:
|
642 |
+
p = tl.where(valid_mask, p, 0.0)
|
643 |
+
if CAUSAL:
|
644 |
+
p = tl.where(causal_mask, p, 0.0)
|
645 |
+
|
646 |
+
# compute dv = dot(p, do)
|
647 |
+
if DIVISIBLE_M:
|
648 |
+
do = tl.load(do_ptrs)
|
649 |
+
else:
|
650 |
+
do = tl.load(do_ptrs, mask=mask_m[:, None]) # (BLOCK_M, BLOCK_DMODEL)
|
651 |
+
dv += tl.dot(tl.trans(p.to(do.dtype)), do) # (BLOCK_N, BLOCK_DMODEL) # still correct
|
652 |
+
|
653 |
+
# compute dp = dot(v, do)
|
654 |
+
if DIVISIBLE_M:
|
655 |
+
delta = tl.load(D + offs_m)
|
656 |
+
else:
|
657 |
+
delta = tl.load(D + offs_m, mask=mask_m)
|
658 |
+
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
659 |
+
dp += tl.dot(do, tl.trans(v))
|
660 |
+
|
661 |
+
# compute ds = p * (dp - delta[:, None])
|
662 |
+
ds = p * (dp - delta[:, None]) # (BLOCK_M, BLOCK_N)
|
663 |
+
|
664 |
+
if not DIVISIBLE_M:
|
665 |
+
ds = tl.where(valid_mask, ds, 0.0)
|
666 |
+
if CAUSAL:
|
667 |
+
ds = tl.where(causal_mask, ds, 0.0)
|
668 |
+
ds = ds.to(input_dtype)
|
669 |
+
|
670 |
+
if RETURN_DS:
|
671 |
+
if DIVISIBLE_M and DIVISIBLE_N:
|
672 |
+
if USE_DS_ATOMIC_ADD:
|
673 |
+
tl.atomic_add(ds_ptrs, ds)
|
674 |
+
else:
|
675 |
+
tl.store(ds_ptrs, ds)
|
676 |
+
else:
|
677 |
+
if USE_DS_ATOMIC_ADD:
|
678 |
+
tl.atomic_add(ds_ptrs, ds, mask=mask_m[:, None] & mask_n[None, :])
|
679 |
+
else:
|
680 |
+
tl.store(ds_ptrs, ds, mask=mask_m[:, None] & mask_n[None, :])
|
681 |
+
|
682 |
+
# compute dk = dot(ds.T, q) masking
|
683 |
+
dk += tl.dot(tl.trans(ds), q)
|
684 |
+
|
685 |
+
# increment pointers
|
686 |
+
q_ptrs += BLOCK_M * stride_qm
|
687 |
+
do_ptrs += BLOCK_M * stride_dom
|
688 |
+
if HAS_BIAS:
|
689 |
+
bias_ptrs += BLOCK_M * stride_bm
|
690 |
+
if RETURN_DS:
|
691 |
+
ds_ptrs += BLOCK_M * stride_bm
|
692 |
+
|
693 |
+
dk *= sm_scale
|
694 |
+
if DIVISIBLE_N:
|
695 |
+
tl.store(dk_ptrs, dk.to(input_dtype)) # (BLOCK_N, BLOCK_DMODEL)
|
696 |
+
tl.store(dv_ptrs, dv.to(input_dtype)) # (BLOCK_N, BLOCK_DMODEL,)
|
697 |
+
else:
|
698 |
+
tl.store(dk_ptrs, dk.to(input_dtype), mask=mask_n[:, None]) # (BLOCK_N, BLOCK_DMODEL)
|
699 |
+
tl.store(dv_ptrs, dv.to(input_dtype), mask=mask_n[:, None]) # (BLOCK_N, BLOCK_DMODEL,)
|
700 |
+
|
701 |
+
|
702 |
+
@triton.jit
|
703 |
+
def _bwd_q_kernel(
|
704 |
+
Q, K, V, B, sm_scale, DO,
|
705 |
+
DQ,
|
706 |
+
L,
|
707 |
+
D,
|
708 |
+
stride_qz, stride_qh, stride_qm, stride_qk,
|
709 |
+
stride_kz, stride_kh, stride_kn, stride_kk,
|
710 |
+
stride_vz, stride_vh, stride_vn, stride_vk,
|
711 |
+
stride_bz, stride_bh, stride_bm, stride_bn,
|
712 |
+
stride_doz, stride_doh, stride_dom, stride_dok,
|
713 |
+
stride_dqz, stride_dqh, stride_dqm, stride_dqk,
|
714 |
+
Z, H, M, N, P_SEQ,
|
715 |
+
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
|
716 |
+
CAUSAL: tl.constexpr, LARGER_M: tl.constexpr,
|
717 |
+
DIVISIBLE_M: tl.constexpr, DIVISIBLE_N: tl.constexpr,
|
718 |
+
HAS_BIAS: tl.constexpr
|
719 |
+
):
|
720 |
+
input_dtype = Q.dtype.element_ty
|
721 |
+
# -- grid id --
|
722 |
+
start_m = tl.program_id(0)
|
723 |
+
off_h = tl.program_id(1)
|
724 |
+
off_z = tl.program_id(2)
|
725 |
+
|
726 |
+
# scale sm_scale by log_2(e) and use
|
727 |
+
# 2^x instead of exp in the loop because CSE and LICM
|
728 |
+
# don't work as expected with `exp` in the loop
|
729 |
+
log2e: tl.constexpr = 1.4426950408889634
|
730 |
+
|
731 |
+
# offset pointers for (batch, head)
|
732 |
+
Q += off_z * stride_qz + off_h * stride_qh
|
733 |
+
K += off_z * stride_kz + off_h * stride_kh
|
734 |
+
V += off_z * stride_vz + off_h * stride_vh
|
735 |
+
if HAS_BIAS:
|
736 |
+
B += off_z * stride_bz + off_h * stride_bh
|
737 |
+
DO += off_z * stride_doz + off_h * stride_doh
|
738 |
+
D += (off_z * H + off_h) * M
|
739 |
+
L += (off_z * H + off_h) * M
|
740 |
+
|
741 |
+
# offset pointers for batch/head
|
742 |
+
DQ += off_z * stride_dqz + off_h * stride_dqh
|
743 |
+
|
744 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
745 |
+
offs_n_base = tl.arange(0, BLOCK_N)
|
746 |
+
offs_n_init = offs_n_base
|
747 |
+
offs_k = tl.arange(0, BLOCK_DMODEL)
|
748 |
+
|
749 |
+
# initialize pointers to value-like data
|
750 |
+
q_ptrs = Q + (offs_m[:, None] * stride_qm + offs_k[None, :] * stride_qk) # (BLOCK_M, BLOCK_DMODEL)
|
751 |
+
k_ptrs = K + (offs_n_init[:, None] * stride_kn + offs_k[None, :] * stride_kk) # (BLOCK_N, BLOCK_DMODEL)
|
752 |
+
v_ptrs = V + (offs_n_init[:, None] * stride_vn + offs_k[None, :] * stride_vk) # (BLOCK_N, BLOCK_DMODEL)
|
753 |
+
|
754 |
+
if HAS_BIAS:
|
755 |
+
bias_ptrs = B + (offs_m[:, None] * stride_bm + offs_n_init[None, :] * stride_bn)
|
756 |
+
|
757 |
+
dq_ptrs = DQ + (offs_m[:, None] * stride_dqm + offs_k[None, :] * stride_dqk) # (BLOCK_M, BLOCK_DMODEL)
|
758 |
+
do_ptrs = DO + (offs_m[:, None] * stride_dom + offs_k[None, :] * stride_dok) # (BLOCK_M, BLOCK_DMODEL)
|
759 |
+
|
760 |
+
# pointer to row-wise quantities in value-like data
|
761 |
+
d_ptrs = D + offs_m
|
762 |
+
l_ptrs = L + offs_m
|
763 |
+
|
764 |
+
# load q: it will stay in SRAM throughout
|
765 |
+
mask_m = offs_m < M
|
766 |
+
if DIVISIBLE_M:
|
767 |
+
q = tl.load(q_ptrs)
|
768 |
+
do = tl.load(do_ptrs)
|
769 |
+
delta = tl.load(d_ptrs)
|
770 |
+
l = tl.load(l_ptrs)
|
771 |
+
else:
|
772 |
+
q = tl.load(q_ptrs, mask=mask_m[:, None])
|
773 |
+
do = tl.load(do_ptrs, mask=mask_m[:, None])
|
774 |
+
delta = tl.load(d_ptrs, mask=mask_m)
|
775 |
+
l = tl.load(l_ptrs, mask=mask_m)
|
776 |
+
|
777 |
+
# initialize dq
|
778 |
+
dq = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
779 |
+
|
780 |
+
# loop over k, v and update accumulator
|
781 |
+
# see note "Loop-Bound-For-N"
|
782 |
+
if CAUSAL:
|
783 |
+
hi = tl.minimum(N, P_SEQ + (start_m + 1) * BLOCK_M)
|
784 |
+
if LARGER_M:
|
785 |
+
hi = tl.maximum(0, hi)
|
786 |
+
else:
|
787 |
+
hi = N
|
788 |
+
|
789 |
+
# loop over a row
|
790 |
+
for start_n in range(0, hi, BLOCK_N):
|
791 |
+
offs_n = start_n + offs_n_base
|
792 |
+
|
793 |
+
# load k1, k2, v on chip
|
794 |
+
mask_n = offs_n < N
|
795 |
+
if DIVISIBLE_N:
|
796 |
+
v = tl.load(v_ptrs)
|
797 |
+
k = tl.load(k_ptrs)
|
798 |
+
else:
|
799 |
+
v = tl.load(v_ptrs, mask=mask_n[:, None])
|
800 |
+
k = tl.load(k_ptrs, mask=mask_n[:, None])
|
801 |
+
|
802 |
+
# load bias
|
803 |
+
if HAS_BIAS:
|
804 |
+
if DIVISIBLE_M and DIVISIBLE_N:
|
805 |
+
b = tl.load(bias_ptrs)
|
806 |
+
else:
|
807 |
+
b = tl.load(bias_ptrs, mask=mask_m[:, None] & mask_n[None, :])
|
808 |
+
|
809 |
+
# recompute p = softmax(qk * sm_scale, dim=-1)
|
810 |
+
if not DIVISIBLE_N:
|
811 |
+
valid_mask = mask_n # & mask_m[:, None]
|
812 |
+
if CAUSAL:
|
813 |
+
causal_mask = (P_SEQ + offs_m[:, None]) >= (offs_n[None, :]) # (BLOCK_M, BLOCK_N)
|
814 |
+
|
815 |
+
s = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
816 |
+
s += tl.dot(q, tl.trans(k)) * sm_scale
|
817 |
+
if HAS_BIAS:
|
818 |
+
s += b
|
819 |
+
|
820 |
+
# NOTE: since softmax in backward is pointwise, the normalizer has been saved in fwd)
|
821 |
+
# So masking on s is not needed.
|
822 |
+
# if CAUSAL:
|
823 |
+
# s = tl.where(causal_mask & valid_mask, s, float("-inf"))
|
824 |
+
# else:
|
825 |
+
# s = tl.where(valid_mask, s, float("-inf"))
|
826 |
+
p = tl.math.exp2((s - l[:, None])*log2e) # (BLOCK_M, BLOCK_N)
|
827 |
+
|
828 |
+
# compute dp = dot(v, do)
|
829 |
+
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
830 |
+
dp += tl.dot(do.to(input_dtype), tl.trans(v))
|
831 |
+
# no need to mask dp
|
832 |
+
# if CAUSAL:
|
833 |
+
# dp = tl.where(causal_mask & valid_mask, dp, 0.0)
|
834 |
+
# else:
|
835 |
+
# dp = tl.where(valid_mask, dp, 0.0)
|
836 |
+
|
837 |
+
# compute ds = p * (dp - delta[:, None])
|
838 |
+
# move scale out to dq at last
|
839 |
+
ds = p * (dp - delta[:, None]) # (BLOCK_M, BLOCK_N)
|
840 |
+
|
841 |
+
# mask ds to ensure no small values
|
842 |
+
if not DIVISIBLE_N:
|
843 |
+
ds = tl.where(valid_mask, ds, 0.0)
|
844 |
+
if CAUSAL:
|
845 |
+
ds = tl.where(causal_mask, ds, 0.0)
|
846 |
+
|
847 |
+
dq += tl.dot(ds.to(input_dtype), k)
|
848 |
+
|
849 |
+
# increment pointers
|
850 |
+
k_ptrs += BLOCK_N * stride_kn
|
851 |
+
v_ptrs += BLOCK_N * stride_vn
|
852 |
+
if HAS_BIAS:
|
853 |
+
bias_ptrs += BLOCK_N * stride_bn
|
854 |
+
|
855 |
+
dq *= sm_scale
|
856 |
+
if DIVISIBLE_M:
|
857 |
+
tl.store(dq_ptrs, dq.to(input_dtype))
|
858 |
+
else:
|
859 |
+
tl.store(dq_ptrs, dq.to(input_dtype), mask=mask_m[:, None])
|
gated_mlp.py
ADDED
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
import triton
|
4 |
+
import triton.language as tl
|
5 |
+
|
6 |
+
from torch.cuda.amp import custom_bwd, custom_fwd
|
7 |
+
|
8 |
+
def to_tl_dtype(input):
|
9 |
+
if input == torch.float32:
|
10 |
+
return tl.float32
|
11 |
+
elif input == torch.float16:
|
12 |
+
return tl.float16
|
13 |
+
elif input == torch.bfloat16:
|
14 |
+
return tl.bfloat16
|
15 |
+
elif input == torch.int64:
|
16 |
+
return tl.int64
|
17 |
+
else:
|
18 |
+
raise ValueError(f"Unable to convert the given input: '{input}'.")
|
19 |
+
|
20 |
+
## Activation function from https://github.com/facebookresearch/xformers/blob/main/xformers/triton/k_activations.py
|
21 |
+
|
22 |
+
_kAlpha = math.sqrt(2.0 / math.pi)
|
23 |
+
|
24 |
+
def gelu_torch(x):
|
25 |
+
"""
|
26 |
+
GeLU_ activation - Gaussian error linear unit
|
27 |
+
|
28 |
+
.. _GeLU: https://arxiv.org/pdf/1606.08415.pdf
|
29 |
+
"""
|
30 |
+
return 0.5 * x * (1 + torch.tanh(_kAlpha * (x + 0.044715 * x * x * x)))
|
31 |
+
|
32 |
+
def gelu_grad_torch(x):
|
33 |
+
# CREDITS: Fast implementation proposed in
|
34 |
+
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/fused_bias_gelu.py#L30
|
35 |
+
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
36 |
+
return 0.5 * x * (
|
37 |
+
(1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)
|
38 |
+
) + 0.5 * (1 + tanh_out)
|
39 |
+
|
40 |
+
# ReLU
|
41 |
+
@triton.jit
|
42 |
+
def tanh(x):
|
43 |
+
# Tanh is just a scaled sigmoid
|
44 |
+
return 2 * tl.sigmoid(2 * x) - 1
|
45 |
+
|
46 |
+
@triton.jit
|
47 |
+
def relu(x):
|
48 |
+
"""
|
49 |
+
ReLU_ activation function
|
50 |
+
|
51 |
+
.. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
|
52 |
+
"""
|
53 |
+
return tl.where(x >= 0, x, 0.0)
|
54 |
+
|
55 |
+
|
56 |
+
@triton.jit
|
57 |
+
def relu_grad(x):
|
58 |
+
# ReLU is different from other activations
|
59 |
+
# in that it does not require the input to retrospectively compute its gradient
|
60 |
+
# here the input is the downstream gradient, and we return the upstream gradient directly
|
61 |
+
return tl.where(x >= 0, 1.0, 0.0)
|
62 |
+
|
63 |
+
@triton.jit
|
64 |
+
def gelu(x):
|
65 |
+
"""
|
66 |
+
GeLU_ activation - Gaussian error linear unit
|
67 |
+
|
68 |
+
.. _GeLU: https://arxiv.org/pdf/1606.08415.pdf
|
69 |
+
"""
|
70 |
+
return 0.5 * x * (1 + tanh(_kAlpha * (x + 0.044715 * x * x * x)))
|
71 |
+
|
72 |
+
|
73 |
+
@triton.jit
|
74 |
+
def gelu_grad(x):
|
75 |
+
# CREDITS: Fast implementation proposed in
|
76 |
+
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/fused_bias_gelu.py#L30
|
77 |
+
tanh_out = tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
78 |
+
return 0.5 * x * (
|
79 |
+
(1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)
|
80 |
+
) + 0.5 * (1 + tanh_out)
|
81 |
+
|
82 |
+
|
83 |
+
@triton.jit
|
84 |
+
def gated_matmul_fwd(
|
85 |
+
# Pointers to matrices
|
86 |
+
out, input, w1, w2,
|
87 |
+
act_input_1, act_input_2,
|
88 |
+
# Matrix dimensions
|
89 |
+
M, N, K,
|
90 |
+
stride_om,
|
91 |
+
stride_im,
|
92 |
+
stride_wn,
|
93 |
+
# Meta-parameters
|
94 |
+
dtype: tl.constexpr,
|
95 |
+
BLOCK_M: tl.constexpr, GROUP_M: tl.constexpr,
|
96 |
+
BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
|
97 |
+
USE_GELU: tl.constexpr,
|
98 |
+
SAVE_ACTIVATION_INPUTS: tl.constexpr,
|
99 |
+
IS_EVEN_MNK: tl.constexpr
|
100 |
+
):
|
101 |
+
|
102 |
+
"""
|
103 |
+
Kernel for computing Out = activation(A x W + C)
|
104 |
+
|
105 |
+
- Input has shape (M, K)
|
106 |
+
- Weight 1 has shape (K, N)
|
107 |
+
- Weight 2 has shape (K, N)
|
108 |
+
- Output has shape (M, N)
|
109 |
+
|
110 |
+
"""
|
111 |
+
|
112 |
+
pid = tl.program_id(0)
|
113 |
+
|
114 |
+
num_pid_m = tl.cdiv(M, BLOCK_M) # number of program ids along the M axis
|
115 |
+
num_pid_n = tl.cdiv(N, BLOCK_N) # number of programs ids along the N axis
|
116 |
+
|
117 |
+
num_pid_in_group = GROUP_M * num_pid_n # number of programs in group
|
118 |
+
group_id = pid // num_pid_in_group # id of the group this program is in
|
119 |
+
first_pid_m = group_id * GROUP_M # row-id of the first program in the group
|
120 |
+
GROUP_M = min(
|
121 |
+
num_pid_m - first_pid_m, GROUP_M
|
122 |
+
) # if `num_pid_m` isn't divisible by `GROUP_M`, the last group is smaller
|
123 |
+
|
124 |
+
# *within groups*, programs are ordered in a column-major order
|
125 |
+
# row-id /col-id of the program in the *launch grid*
|
126 |
+
pid_m = first_pid_m + (pid % GROUP_M)
|
127 |
+
pid_n = (pid % num_pid_in_group) // GROUP_M
|
128 |
+
|
129 |
+
input_block_ptr = tl.make_block_ptr(
|
130 |
+
base=input,
|
131 |
+
shape=(M, K),
|
132 |
+
strides=(stride_im, 1),
|
133 |
+
offsets=(pid_m * BLOCK_M, 0),
|
134 |
+
block_shape=(BLOCK_M, BLOCK_K),
|
135 |
+
order=(1, 0),
|
136 |
+
)
|
137 |
+
|
138 |
+
w1_block_ptr = tl.make_block_ptr(
|
139 |
+
base=w1,
|
140 |
+
shape=(K, N),
|
141 |
+
strides=(1, stride_wn),
|
142 |
+
offsets=(0, pid_n * BLOCK_N),
|
143 |
+
block_shape=(BLOCK_K, BLOCK_N),
|
144 |
+
order=(0, 1),
|
145 |
+
)
|
146 |
+
|
147 |
+
w2_block_ptr = tl.make_block_ptr(
|
148 |
+
base=w2,
|
149 |
+
shape=(K, N),
|
150 |
+
strides=(1, stride_wn),
|
151 |
+
offsets=(0, pid_n * BLOCK_N),
|
152 |
+
block_shape=(BLOCK_K, BLOCK_N),
|
153 |
+
order=(0, 1),
|
154 |
+
)
|
155 |
+
|
156 |
+
# initialize and iteratively update accumulator
|
157 |
+
acc1 = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
|
158 |
+
acc2 = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
|
159 |
+
|
160 |
+
for i in range(0, K, BLOCK_K):
|
161 |
+
|
162 |
+
if IS_EVEN_MNK:
|
163 |
+
x = tl.load(input_block_ptr)
|
164 |
+
w1_blk = tl.load(w1_block_ptr)
|
165 |
+
w2_blk = tl.load(w2_block_ptr)
|
166 |
+
else:
|
167 |
+
x = tl.load(input_block_ptr, boundary_check=(0, 1))
|
168 |
+
w1_blk = tl.load(w1_block_ptr, boundary_check=(0, 1))
|
169 |
+
w2_blk = tl.load(w2_block_ptr, boundary_check=(0, 1))
|
170 |
+
|
171 |
+
acc1 += tl.dot(x, w1_blk)
|
172 |
+
acc2 += tl.dot(x, w2_blk)
|
173 |
+
|
174 |
+
input_block_ptr = tl.advance(input_block_ptr, (0, BLOCK_K))
|
175 |
+
w1_block_ptr = tl.advance(w1_block_ptr, (BLOCK_K, 0))
|
176 |
+
w2_block_ptr = tl.advance(w2_block_ptr, (BLOCK_K, 0))
|
177 |
+
|
178 |
+
if SAVE_ACTIVATION_INPUTS:
|
179 |
+
act_in_1_ptrs = tl.make_block_ptr(
|
180 |
+
base=act_input_1,
|
181 |
+
shape=(M, N),
|
182 |
+
strides=(stride_om, 1),
|
183 |
+
offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
|
184 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
185 |
+
order=(1, 0),
|
186 |
+
)
|
187 |
+
|
188 |
+
act_in_2_ptrs = tl.make_block_ptr(
|
189 |
+
base=act_input_2,
|
190 |
+
shape=(M, N),
|
191 |
+
strides=(stride_om, 1),
|
192 |
+
offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
|
193 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
194 |
+
order=(1, 0),
|
195 |
+
)
|
196 |
+
|
197 |
+
if IS_EVEN_MNK:
|
198 |
+
tl.store(act_in_1_ptrs, acc1.to(dtype))
|
199 |
+
tl.store(act_in_2_ptrs, acc2.to(dtype))
|
200 |
+
else:
|
201 |
+
tl.store(act_in_1_ptrs, acc1.to(dtype), boundary_check=(0, 1))
|
202 |
+
tl.store(act_in_2_ptrs, acc2.to(dtype), boundary_check=(0, 1))
|
203 |
+
|
204 |
+
if USE_GELU:
|
205 |
+
acc1 = gelu(acc1)
|
206 |
+
else:
|
207 |
+
acc1 = relu(acc1)
|
208 |
+
|
209 |
+
# gating
|
210 |
+
acc = acc1 * acc2
|
211 |
+
|
212 |
+
# write back result
|
213 |
+
out_ptrs = tl.make_block_ptr(
|
214 |
+
base=out,
|
215 |
+
shape=(M, N),
|
216 |
+
strides=(stride_om, 1),
|
217 |
+
offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
|
218 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
219 |
+
order=(1, 0),
|
220 |
+
)
|
221 |
+
|
222 |
+
if IS_EVEN_MNK:
|
223 |
+
tl.store(out_ptrs, acc.to(dtype))
|
224 |
+
else:
|
225 |
+
tl.store(out_ptrs, acc.to(dtype), boundary_check=(0, 1))
|
226 |
+
|
227 |
+
@triton.jit
|
228 |
+
def gated_matmul_bwd_ygrad(
|
229 |
+
dout,
|
230 |
+
y1_grad, y2_grad,
|
231 |
+
act_input_1, act_input_2,
|
232 |
+
M, N,
|
233 |
+
stride_dom,
|
234 |
+
# Meta-parameters
|
235 |
+
dtype: tl.constexpr,
|
236 |
+
BLOCK_M: tl.constexpr,
|
237 |
+
BLOCK_N: tl.constexpr,
|
238 |
+
USE_GELU: tl.constexpr,
|
239 |
+
IS_EVEN_MNK: tl.constexpr):
|
240 |
+
|
241 |
+
"""
|
242 |
+
Kernel for backward gated MLP
|
243 |
+
|
244 |
+
Ref :
|
245 |
+
y2_grad = torch.mul(gelu(x @ w1), dout)
|
246 |
+
y1_grad = torch.mul(gelu_grad(x @ w1) * (x @ w2), dout)
|
247 |
+
"""
|
248 |
+
|
249 |
+
pid_m = tl.program_id(0)
|
250 |
+
pid_n = tl.program_id(1)
|
251 |
+
|
252 |
+
# block pointers
|
253 |
+
actin_1_block_ptr = tl.make_block_ptr(
|
254 |
+
base=act_input_1,
|
255 |
+
shape=(M, N),
|
256 |
+
strides=(stride_dom, 1),
|
257 |
+
offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
|
258 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
259 |
+
order=(1, 0),
|
260 |
+
)
|
261 |
+
|
262 |
+
actin_2_block_ptr = tl.make_block_ptr(
|
263 |
+
base=act_input_2,
|
264 |
+
shape=(M, N),
|
265 |
+
strides=(stride_dom, 1),
|
266 |
+
offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
|
267 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
268 |
+
order=(1, 0),
|
269 |
+
)
|
270 |
+
|
271 |
+
dout_block_ptr = tl.make_block_ptr(
|
272 |
+
base=dout,
|
273 |
+
shape=(M, N),
|
274 |
+
strides=(stride_dom, 1),
|
275 |
+
offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
|
276 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
277 |
+
order=(1, 0),
|
278 |
+
)
|
279 |
+
|
280 |
+
if IS_EVEN_MNK:
|
281 |
+
dout_blk = tl.load(dout_block_ptr)
|
282 |
+
actin_1_blk = tl.load(actin_1_block_ptr)
|
283 |
+
actin_2_blk = tl.load(actin_2_block_ptr)
|
284 |
+
else:
|
285 |
+
dout_blk = tl.load(dout_block_ptr, boundary_check=(0, 1))
|
286 |
+
actin_1_blk = tl.load(actin_1_block_ptr, boundary_check=(0, 1))
|
287 |
+
actin_2_blk = tl.load(actin_2_block_ptr, boundary_check=(0, 1))
|
288 |
+
|
289 |
+
if USE_GELU:
|
290 |
+
actin_act = gelu(actin_1_blk)
|
291 |
+
actin_act_grad = gelu_grad(actin_1_blk)
|
292 |
+
else:
|
293 |
+
actin_act = relu(actin_1_blk)
|
294 |
+
actin_act_grad = relu_grad(actin_1_blk)
|
295 |
+
|
296 |
+
actin_act *= dout_blk # y2_grad
|
297 |
+
actin_act_grad *= actin_2_blk
|
298 |
+
actin_act_grad *= dout_blk # y1_grad
|
299 |
+
|
300 |
+
y1_grad_ptrs = tl.make_block_ptr(
|
301 |
+
base=y1_grad,
|
302 |
+
shape=(M, N),
|
303 |
+
strides=(stride_dom, 1),
|
304 |
+
offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
|
305 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
306 |
+
order=(1, 0),
|
307 |
+
)
|
308 |
+
|
309 |
+
y2_grad_ptrs = tl.make_block_ptr(
|
310 |
+
base=y2_grad,
|
311 |
+
shape=(M, N),
|
312 |
+
strides=(stride_dom, 1),
|
313 |
+
offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
|
314 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
315 |
+
order=(1, 0),
|
316 |
+
)
|
317 |
+
|
318 |
+
if IS_EVEN_MNK:
|
319 |
+
tl.store(y1_grad_ptrs, actin_act_grad.to(dtype))
|
320 |
+
tl.store(y2_grad_ptrs, actin_act.to(dtype))
|
321 |
+
else:
|
322 |
+
tl.store(y1_grad_ptrs, actin_act_grad.to(dtype), boundary_check=(0, 1))
|
323 |
+
tl.store(y2_grad_ptrs, actin_act.to(dtype), boundary_check=(0, 1))
|
324 |
+
|
325 |
+
|
326 |
+
@triton.jit
|
327 |
+
def gated_matmul_bwd_input(
|
328 |
+
# Pointers to matrices
|
329 |
+
w1, w2, # weights inputs
|
330 |
+
y1_grad, y2_grad, # partial computation
|
331 |
+
din, # outputs
|
332 |
+
# Matrix dimensions
|
333 |
+
M, N, K,
|
334 |
+
stride_dom, stride_im,
|
335 |
+
stride_wn,
|
336 |
+
# Meta-parameters
|
337 |
+
dtype: tl.constexpr,
|
338 |
+
BLOCK_M: tl.constexpr, GROUP_M: tl.constexpr,
|
339 |
+
BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
|
340 |
+
IS_EVEN_MNK: tl.constexpr
|
341 |
+
):
|
342 |
+
|
343 |
+
"""
|
344 |
+
Kernel for backward gated MLP
|
345 |
+
We group along the N axis
|
346 |
+
|
347 |
+
Ref :
|
348 |
+
x_grad = torch.matmul(y2_grad, w2.t()) + torch.matmul(y1_grad, w1.t())
|
349 |
+
"""
|
350 |
+
|
351 |
+
pid = tl.program_id(0)
|
352 |
+
|
353 |
+
num_pid_m = tl.cdiv(M, BLOCK_M) # number of program ids along the M axis
|
354 |
+
num_pid_k = tl.cdiv(K, BLOCK_K) # number of programs ids along the K axis
|
355 |
+
|
356 |
+
num_pid_in_group = GROUP_M * num_pid_k # number of programs in group
|
357 |
+
group_id = pid // num_pid_in_group # id of the group this program is in
|
358 |
+
first_pid_m = group_id * GROUP_M # row-id of the first program in the group
|
359 |
+
GROUP_M = min(
|
360 |
+
num_pid_m - first_pid_m, GROUP_M
|
361 |
+
) # if `num_pid_m` isn't divisible by `GROUP_M`, the last group is smaller
|
362 |
+
|
363 |
+
# *within groups*, programs are ordered in a column-major order
|
364 |
+
# row-id /col-id of the program in the *launch grid*
|
365 |
+
pid_m = first_pid_m + (pid % GROUP_M)
|
366 |
+
pid_k = (pid % num_pid_in_group) // GROUP_M
|
367 |
+
|
368 |
+
y1_grad_block_ptr = tl.make_block_ptr(
|
369 |
+
base=y1_grad,
|
370 |
+
shape=(M, N),
|
371 |
+
strides=(stride_dom, 1),
|
372 |
+
offsets=(pid_m * BLOCK_M, 0),
|
373 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
374 |
+
order=(1, 0),
|
375 |
+
)
|
376 |
+
|
377 |
+
y2_grad_block_ptr = tl.make_block_ptr(
|
378 |
+
base=y2_grad,
|
379 |
+
shape=(M, N),
|
380 |
+
strides=(stride_dom, 1),
|
381 |
+
offsets=(pid_m * BLOCK_M, 0),
|
382 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
383 |
+
order=(1, 0),
|
384 |
+
)
|
385 |
+
|
386 |
+
w1_block_ptr = tl.make_block_ptr(
|
387 |
+
base=w1,
|
388 |
+
shape=(N, K),
|
389 |
+
strides=(stride_wn, 1),
|
390 |
+
offsets=(0, pid_k * BLOCK_K),
|
391 |
+
block_shape=(BLOCK_N, BLOCK_K),
|
392 |
+
order=(1, 0),
|
393 |
+
)
|
394 |
+
|
395 |
+
w2_block_ptr = tl.make_block_ptr(
|
396 |
+
base=w2,
|
397 |
+
shape=(N, K),
|
398 |
+
strides=(stride_wn, 1),
|
399 |
+
offsets=(0, pid_k * BLOCK_K),
|
400 |
+
block_shape=(BLOCK_N, BLOCK_K),
|
401 |
+
order=(1, 0),
|
402 |
+
)
|
403 |
+
|
404 |
+
# initialize and iteratively update accumulator
|
405 |
+
acc_dx = tl.zeros((BLOCK_M, BLOCK_K), dtype=tl.float32)
|
406 |
+
|
407 |
+
for i in range(0, N, BLOCK_N):
|
408 |
+
|
409 |
+
if IS_EVEN_MNK:
|
410 |
+
w1_blk = tl.load(w1_block_ptr)
|
411 |
+
w2_blk = tl.load(w2_block_ptr)
|
412 |
+
y1_grad_blk = tl.load(y1_grad_block_ptr)
|
413 |
+
y2_grad_blk = tl.load(y2_grad_block_ptr)
|
414 |
+
else:
|
415 |
+
w1_blk = tl.load(w1_block_ptr, boundary_check=(0, 1))
|
416 |
+
w2_blk = tl.load(w2_block_ptr, boundary_check=(0, 1))
|
417 |
+
y1_grad_blk = tl.load(y1_grad_block_ptr, boundary_check=(0, 1))
|
418 |
+
y2_grad_blk = tl.load(y2_grad_block_ptr, boundary_check=(0, 1))
|
419 |
+
|
420 |
+
acc_dx += tl.dot(y2_grad_blk, w2_blk)
|
421 |
+
acc_dx += tl.dot(y1_grad_blk, w1_blk)
|
422 |
+
|
423 |
+
w1_block_ptr = tl.advance(w1_block_ptr, (BLOCK_N, 0))
|
424 |
+
w2_block_ptr = tl.advance(w2_block_ptr, (BLOCK_N, 0))
|
425 |
+
y1_grad_block_ptr = tl.advance(y1_grad_block_ptr, (0, BLOCK_N))
|
426 |
+
y2_grad_block_ptr = tl.advance(y2_grad_block_ptr, (0, BLOCK_N))
|
427 |
+
|
428 |
+
# write back result
|
429 |
+
dx_ptrs = tl.make_block_ptr(
|
430 |
+
base=din,
|
431 |
+
shape=(M, K),
|
432 |
+
strides=(stride_im, 1),
|
433 |
+
offsets=(pid_m * BLOCK_M, pid_k * BLOCK_K),
|
434 |
+
block_shape=(BLOCK_M, BLOCK_K),
|
435 |
+
order=(1, 0),
|
436 |
+
)
|
437 |
+
|
438 |
+
if IS_EVEN_MNK:
|
439 |
+
tl.store(dx_ptrs, acc_dx.to(dtype))
|
440 |
+
else:
|
441 |
+
tl.store(dx_ptrs, acc_dx.to(dtype), boundary_check=(0, 1))
|
442 |
+
|
443 |
+
|
444 |
+
@triton.jit
|
445 |
+
def gated_matmul_bwd_weights(
|
446 |
+
# Pointers to matrices
|
447 |
+
input,
|
448 |
+
y1_grad, y2_grad, # precomputations
|
449 |
+
dw1, dw2, # outputs
|
450 |
+
# Matrix dimensions
|
451 |
+
M, N, K,
|
452 |
+
stride_dom, stride_im,
|
453 |
+
stride_wn,
|
454 |
+
# Meta-parameters
|
455 |
+
dtype: tl.constexpr,
|
456 |
+
BLOCK_M: tl.constexpr, GROUP_N: tl.constexpr,
|
457 |
+
BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
|
458 |
+
IS_EVEN_MNK: tl.constexpr
|
459 |
+
):
|
460 |
+
|
461 |
+
"""
|
462 |
+
Kernel for backward gated MLP
|
463 |
+
We group along the M axis
|
464 |
+
|
465 |
+
Ref :
|
466 |
+
w1_grad = torch.matmul(y1_grad.t(), x)
|
467 |
+
w2_grad = torch.matmul(y2_grad.t(), x)
|
468 |
+
"""
|
469 |
+
|
470 |
+
pid = tl.program_id(0)
|
471 |
+
|
472 |
+
num_pid_n = tl.cdiv(N, BLOCK_N) # number of program ids along the M axis
|
473 |
+
num_pid_k = tl.cdiv(K, BLOCK_K) # number of programs ids along the K axis
|
474 |
+
|
475 |
+
num_pid_in_group = GROUP_N * num_pid_k # number of programs in group
|
476 |
+
group_id = pid // num_pid_in_group # id of the group this program is in
|
477 |
+
first_pid_n = group_id * GROUP_N # row-id of the first program in the group
|
478 |
+
GROUP_N = min(
|
479 |
+
num_pid_n - first_pid_n, GROUP_N
|
480 |
+
) # if `num_pid_m` isn't divisible by `GROUP_M`, the last group is smaller
|
481 |
+
|
482 |
+
# *within groups*, programs are ordered in a column-major order
|
483 |
+
# row-id /col-id of the program in the *launch grid*
|
484 |
+
pid_n = first_pid_n + (pid % GROUP_N)
|
485 |
+
pid_k = (pid % num_pid_in_group) // GROUP_N
|
486 |
+
|
487 |
+
# block pointers
|
488 |
+
y1_grad_block_ptr = tl.make_block_ptr(
|
489 |
+
base=y1_grad,
|
490 |
+
shape=(N, M),
|
491 |
+
strides=(1, stride_dom),
|
492 |
+
offsets=(pid_n * BLOCK_N, 0),
|
493 |
+
block_shape=(BLOCK_N, BLOCK_M),
|
494 |
+
order=(0, 1),
|
495 |
+
)
|
496 |
+
|
497 |
+
y2_grad_block_ptr = tl.make_block_ptr(
|
498 |
+
base=y2_grad,
|
499 |
+
shape=(N, M),
|
500 |
+
strides=(1, stride_dom),
|
501 |
+
offsets=(pid_n * BLOCK_N, 0),
|
502 |
+
block_shape=(BLOCK_N, BLOCK_M),
|
503 |
+
order=(0, 1),
|
504 |
+
)
|
505 |
+
|
506 |
+
input_block_ptr = tl.make_block_ptr(
|
507 |
+
base=input,
|
508 |
+
shape=(M, K),
|
509 |
+
strides=(stride_im, 1),
|
510 |
+
offsets=(0, pid_k * BLOCK_K),
|
511 |
+
block_shape=(BLOCK_M, BLOCK_K),
|
512 |
+
order=(1, 0),
|
513 |
+
)
|
514 |
+
|
515 |
+
ref = tl.load(input + tl.arange(0, 1))
|
516 |
+
|
517 |
+
# initialize and iteratively update accumulator
|
518 |
+
acc_dw1 = tl.zeros((BLOCK_N, BLOCK_K), dtype=tl.float32)
|
519 |
+
acc_dw2 = tl.zeros((BLOCK_N, BLOCK_K), dtype=tl.float32)
|
520 |
+
|
521 |
+
for i in range(0, M, BLOCK_M):
|
522 |
+
|
523 |
+
if IS_EVEN_MNK:
|
524 |
+
y1grad_blk = tl.load(y1_grad_block_ptr)
|
525 |
+
y2grad_blk = tl.load(y2_grad_block_ptr)
|
526 |
+
x = tl.load(input_block_ptr)
|
527 |
+
else:
|
528 |
+
y1grad_blk = tl.load(y1_grad_block_ptr, boundary_check=(0, 1))
|
529 |
+
y2grad_blk = tl.load(y2_grad_block_ptr, boundary_check=(0, 1))
|
530 |
+
x = tl.load(input_block_ptr, boundary_check=(0, 1))
|
531 |
+
|
532 |
+
acc_dw1 += tl.dot(y1grad_blk, x)
|
533 |
+
acc_dw2 += tl.dot(y2grad_blk, x)
|
534 |
+
|
535 |
+
y1_grad_block_ptr = tl.advance(y1_grad_block_ptr, (0, BLOCK_M))
|
536 |
+
y2_grad_block_ptr = tl.advance(y2_grad_block_ptr, (0, BLOCK_M))
|
537 |
+
input_block_ptr = tl.advance(input_block_ptr, (BLOCK_M, 0))
|
538 |
+
|
539 |
+
# write back result
|
540 |
+
dw1_ptrs = tl.make_block_ptr(
|
541 |
+
base=dw1,
|
542 |
+
shape=(N, K),
|
543 |
+
strides=(stride_wn, 1),
|
544 |
+
offsets=(pid_n * BLOCK_N, pid_k * BLOCK_K),
|
545 |
+
block_shape=(BLOCK_N, BLOCK_K),
|
546 |
+
order=(1, 0),
|
547 |
+
)
|
548 |
+
|
549 |
+
dw2_ptrs = tl.make_block_ptr(
|
550 |
+
base=dw2,
|
551 |
+
shape=(N, K),
|
552 |
+
strides=(stride_wn, 1),
|
553 |
+
offsets=(pid_n * BLOCK_N, pid_k * BLOCK_K),
|
554 |
+
block_shape=(BLOCK_N, BLOCK_K),
|
555 |
+
order=(1, 0),
|
556 |
+
)
|
557 |
+
|
558 |
+
if IS_EVEN_MNK:
|
559 |
+
tl.store(dw1_ptrs, acc_dw1.to(dtype))
|
560 |
+
tl.store(dw2_ptrs, acc_dw2.to(dtype))
|
561 |
+
else:
|
562 |
+
tl.store(dw1_ptrs, acc_dw1.to(dtype), boundary_check=(0, 1))
|
563 |
+
tl.store(dw2_ptrs, acc_dw2.to(dtype), boundary_check=(0, 1))
|
564 |
+
|
565 |
+
|
566 |
+
class GatedMLP(torch.autograd.Function):
|
567 |
+
@staticmethod
|
568 |
+
@custom_fwd
|
569 |
+
def forward(ctx, x, w1, w2, use_gelu=True):
|
570 |
+
|
571 |
+
BLOCK_M = 128
|
572 |
+
BLOCK_N = 64
|
573 |
+
BLOCK_K = 64
|
574 |
+
GROUP_M = 8
|
575 |
+
|
576 |
+
SAVE_ACT_IN = x.requires_grad
|
577 |
+
|
578 |
+
if torch.is_autocast_enabled():
|
579 |
+
x = x.to(torch.get_autocast_gpu_dtype())
|
580 |
+
w1 = w1.to(torch.get_autocast_gpu_dtype())
|
581 |
+
w2 = w2.to(torch.get_autocast_gpu_dtype())
|
582 |
+
|
583 |
+
assert x.is_contiguous()
|
584 |
+
assert w1.is_contiguous()
|
585 |
+
assert w2.is_contiguous()
|
586 |
+
assert w1.shape == w2.shape
|
587 |
+
assert x.shape[2] == w1.shape[1]
|
588 |
+
assert x.shape[2] == w2.shape[1]
|
589 |
+
|
590 |
+
x_ = x if x.ndim == 2 else x.flatten(0, -2)
|
591 |
+
|
592 |
+
M, K = x_.shape
|
593 |
+
N, K = w1.shape
|
594 |
+
|
595 |
+
IS_EVEN_MNK = ((M % BLOCK_M) == 0) and ((N % BLOCK_N) == 0) and ((K % BLOCK_K) == 0)
|
596 |
+
|
597 |
+
out = torch.empty((M, N), device=x.device, dtype=x.dtype)
|
598 |
+
|
599 |
+
tl_dtype = to_tl_dtype(x.dtype)
|
600 |
+
|
601 |
+
act_input_1, act_input_2 = None, None
|
602 |
+
if SAVE_ACT_IN:
|
603 |
+
act_input_1 = torch.empty_like(out)
|
604 |
+
act_input_2 = torch.empty_like(out)
|
605 |
+
|
606 |
+
grid = (triton.cdiv(M, BLOCK_M) * triton.cdiv(N, BLOCK_N),)
|
607 |
+
gated_matmul_fwd[grid](
|
608 |
+
out,
|
609 |
+
x_, w1, w2,
|
610 |
+
act_input_1, act_input_2,
|
611 |
+
M, N, K,
|
612 |
+
out.stride(0), x_.stride(0),
|
613 |
+
w1.stride(0),
|
614 |
+
tl_dtype,
|
615 |
+
BLOCK_M, GROUP_M, BLOCK_N, BLOCK_K,
|
616 |
+
use_gelu,
|
617 |
+
SAVE_ACT_IN,
|
618 |
+
IS_EVEN_MNK,
|
619 |
+
)
|
620 |
+
|
621 |
+
ctx.save_for_backward(x_, w1, w2, act_input_1, act_input_2)
|
622 |
+
ctx.use_gelu = use_gelu
|
623 |
+
ctx.is_even_nmk = IS_EVEN_MNK
|
624 |
+
ctx.x_shape = x.shape
|
625 |
+
|
626 |
+
out = out if x.ndim == 2 else out.reshape(*x.shape[:-1], N)
|
627 |
+
|
628 |
+
return out
|
629 |
+
|
630 |
+
@staticmethod
|
631 |
+
@custom_bwd
|
632 |
+
def backward(ctx, dout):
|
633 |
+
BLOCK_M = 64
|
634 |
+
BLOCK_N = 64
|
635 |
+
BLOCK_K = 64
|
636 |
+
GROUP_M = 8
|
637 |
+
|
638 |
+
x_, w1, w2, act_input_1, act_input_2 = ctx.saved_tensors
|
639 |
+
|
640 |
+
M, K = x_.shape
|
641 |
+
N, K = w1.shape
|
642 |
+
|
643 |
+
tl_dtype = to_tl_dtype(x_.dtype)
|
644 |
+
|
645 |
+
'''
|
646 |
+
din = torch.empty_like(x_)
|
647 |
+
dw1 = torch.empty_like(w1)
|
648 |
+
dw2 = torch.empty_like(w2)
|
649 |
+
|
650 |
+
dout_ = dout if dout.ndim == 2 else dout.flatten(0, -2)
|
651 |
+
|
652 |
+
y1_grad = torch.empty_like(dout_)
|
653 |
+
y2_grad = torch.empty_like(dout_)
|
654 |
+
|
655 |
+
grid = (triton.cdiv(M, BLOCK_M), triton.cdiv(N, BLOCK_N))
|
656 |
+
gated_matmul_bwd_ygrad[grid](
|
657 |
+
dout_,
|
658 |
+
y1_grad, y2_grad,
|
659 |
+
act_input_1, act_input_2,
|
660 |
+
M, N,
|
661 |
+
dout_.stride(0),
|
662 |
+
# Meta-parameters
|
663 |
+
tl_dtype,
|
664 |
+
BLOCK_M, BLOCK_N,
|
665 |
+
ctx.use_gelu,
|
666 |
+
ctx.is_even_nmk)
|
667 |
+
|
668 |
+
grid = (triton.cdiv(M, BLOCK_M) * triton.cdiv(K, BLOCK_K),)
|
669 |
+
gated_matmul_bwd_input[grid](
|
670 |
+
w1, w2,
|
671 |
+
y1_grad, y2_grad,
|
672 |
+
din,
|
673 |
+
M, N, K,
|
674 |
+
dout_.stride(0), x_.stride(0),
|
675 |
+
w1.stride(0),
|
676 |
+
tl_dtype,
|
677 |
+
BLOCK_M, GROUP_M,
|
678 |
+
BLOCK_N, BLOCK_K,
|
679 |
+
ctx.is_even_nmk)
|
680 |
+
|
681 |
+
# reorder sizes
|
682 |
+
BLOCK_M = 64
|
683 |
+
BLOCK_N = 64
|
684 |
+
grid = (triton.cdiv(N, BLOCK_N) * triton.cdiv(K, BLOCK_K),)
|
685 |
+
gated_matmul_bwd_weights[grid](
|
686 |
+
x_,
|
687 |
+
y1_grad, y2_grad,
|
688 |
+
dw1, dw2,
|
689 |
+
M, N, K,
|
690 |
+
y1_grad.stride(0), x_.stride(0),
|
691 |
+
dw1.stride(0),
|
692 |
+
tl_dtype,
|
693 |
+
BLOCK_M, GROUP_M,
|
694 |
+
BLOCK_N, BLOCK_K,
|
695 |
+
ctx.is_even_nmk)
|
696 |
+
|
697 |
+
din = din if len(ctx.x_shape) == 2 else din.reshape(ctx.x_shape)
|
698 |
+
'''
|
699 |
+
|
700 |
+
dout_ = dout if dout.ndim == 2 else dout.flatten(0, -2)
|
701 |
+
|
702 |
+
y1_grad = torch.empty_like(dout_)
|
703 |
+
y2_grad = torch.empty_like(dout_)
|
704 |
+
|
705 |
+
grid = (triton.cdiv(M, BLOCK_M), triton.cdiv(N, BLOCK_N))
|
706 |
+
gated_matmul_bwd_ygrad[grid](
|
707 |
+
dout_,
|
708 |
+
y1_grad, y2_grad,
|
709 |
+
act_input_1, act_input_2,
|
710 |
+
M, N,
|
711 |
+
dout_.stride(0),
|
712 |
+
# Meta-parameters
|
713 |
+
tl_dtype,
|
714 |
+
BLOCK_M, BLOCK_N,
|
715 |
+
ctx.use_gelu,
|
716 |
+
ctx.is_even_nmk)
|
717 |
+
|
718 |
+
#y2_grad = torch.mul(gelu_torch(x_ @ w1.t()), dout_)
|
719 |
+
#y1_grad = torch.mul(gelu_grad_torch(x_ @ w1.t()) * (x_ @ w2.t()), dout_)
|
720 |
+
|
721 |
+
din = torch.matmul(y2_grad, w2) + torch.matmul(y1_grad, w1)
|
722 |
+
dw1 = torch.matmul(y1_grad.t(), x_)
|
723 |
+
dw2 = torch.matmul(y2_grad.t(), x_)
|
724 |
+
|
725 |
+
din = din if len(ctx.x_shape) == 2 else din.reshape(ctx.x_shape)
|
726 |
+
|
727 |
+
return din, dw1, dw2, None
|
728 |
+
|
729 |
+
gated_mlp = GatedMLP.apply
|
modeling_flash_t5.py
ADDED
@@ -0,0 +1,839 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# From: https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
|
5 |
+
import copy
|
6 |
+
import math
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
from torch.nn import CrossEntropyLoss
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from transformers.modeling_utils import ModuleUtilsMixin
|
15 |
+
from transformers.modeling_outputs import ModelOutput, Seq2SeqModelOutput, BaseModelOutput
|
16 |
+
from transformers import PreTrainedModel
|
17 |
+
|
18 |
+
try:
|
19 |
+
from .rms_norm import fast_rms_layernorm
|
20 |
+
except ImportError:
|
21 |
+
fast_rms_layernorm = None
|
22 |
+
|
23 |
+
try:
|
24 |
+
from .cross_entropy_loss import fast_cross_entropy_loss
|
25 |
+
except ImportError:
|
26 |
+
fast_cross_entropy_loss = None
|
27 |
+
|
28 |
+
try:
|
29 |
+
from .flash_attention_v2_bias import attention as flash_attention_triton
|
30 |
+
except ImportError:
|
31 |
+
fast_cross_entropy_loss = None
|
32 |
+
|
33 |
+
try:
|
34 |
+
from .gated_mlp import gated_mlp
|
35 |
+
except ImportError:
|
36 |
+
gated_mlp = None
|
37 |
+
|
38 |
+
try:
|
39 |
+
#from flash_attn import flash_attn_kvpacked_func, flash_attn_func
|
40 |
+
from .fa2_compilable import flash_attn_kvpacked_func, flash_attn_func
|
41 |
+
except ImportError:
|
42 |
+
flash_attn_kvpacked_func, flash_attn_func = None, None
|
43 |
+
|
44 |
+
from .attn_ref import attn_ref
|
45 |
+
|
46 |
+
from .configuration_flash_t5 import FlashT5Config
|
47 |
+
from .positional_encoding import ALiBiPositionalEncoding, RelativePositionalEncoding, RotaryPositionalEncoding
|
48 |
+
|
49 |
+
@dataclass
|
50 |
+
class EncoderOutput(ModelOutput):
|
51 |
+
hidden_states: torch.FloatTensor = None
|
52 |
+
attention_mask: torch.FloatTensor = None
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
class Seq2SeqLMOutput(ModelOutput):
|
56 |
+
loss: torch.FloatTensor = None
|
57 |
+
logits: torch.FloatTensor = None
|
58 |
+
encoder_outputs: EncoderOutput = None
|
59 |
+
|
60 |
+
|
61 |
+
class FlashT5CrossEntropyLoss(nn.Module):
|
62 |
+
def __init__(self, z_loss_factor=0.0, label_smoothing=0.0, use_triton_crossentropy=False):
|
63 |
+
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
if use_triton_crossentropy and fast_cross_entropy_loss is None:
|
67 |
+
raise ImportError("fast_cross_entropy_loss is not available")
|
68 |
+
|
69 |
+
self.use_triton_crossentropy = use_triton_crossentropy
|
70 |
+
self.z_loss_factor = z_loss_factor
|
71 |
+
|
72 |
+
self.cross_entropy_loss = nn.CrossEntropyLoss(label_smoothing=label_smoothing)
|
73 |
+
|
74 |
+
def compute_zloss(self, logits: torch.Tensor, z_loss: float):
|
75 |
+
logits_sum = torch.logsumexp(logits, dim=-1, keepdim=True)
|
76 |
+
log_z = torch.squeeze(logits_sum, axis=-1)
|
77 |
+
total_z_loss = z_loss * torch.square(log_z)
|
78 |
+
return total_z_loss.mean()
|
79 |
+
|
80 |
+
def forward(self, logits, labels):
|
81 |
+
|
82 |
+
if self.use_triton_crossentropy:
|
83 |
+
return fast_cross_entropy_loss(logits, labels, z_loss_factor=self.z_loss_factor)
|
84 |
+
|
85 |
+
# use standard method
|
86 |
+
batch, seq_len, d = logits.shape
|
87 |
+
logits_flatten = logits.float().view(batch*seq_len, d) # Must cast to float32 for numerical stability
|
88 |
+
labels_flatten = labels.view(-1)
|
89 |
+
loss = self.cross_entropy_loss(logits_flatten, labels_flatten)
|
90 |
+
z_loss = 0.0
|
91 |
+
if self.z_loss_factor != 0.0:
|
92 |
+
z_loss = self.compute_zloss(logits_flatten[labels_flatten != -100],
|
93 |
+
z_loss=self.z_loss_factor)
|
94 |
+
return loss, z_loss
|
95 |
+
|
96 |
+
class FlashT5LayerNorm(nn.Module):
|
97 |
+
def __init__(self, hidden_size, eps=1e-6, use_triton_layernorm=False):
|
98 |
+
"""
|
99 |
+
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
|
100 |
+
"""
|
101 |
+
super().__init__()
|
102 |
+
|
103 |
+
if use_triton_layernorm and fast_rms_layernorm is None:
|
104 |
+
raise ImportError("fast_rms_layernorm is not available")
|
105 |
+
|
106 |
+
self.use_triton_layernorm = use_triton_layernorm
|
107 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
108 |
+
self.variance_epsilon = eps
|
109 |
+
|
110 |
+
def forward(self, hidden_states):
|
111 |
+
|
112 |
+
if self.use_triton_layernorm:
|
113 |
+
return fast_rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
|
114 |
+
|
115 |
+
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
116 |
+
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
|
117 |
+
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
118 |
+
# half-precision inputs is done in fp32
|
119 |
+
|
120 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
121 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
122 |
+
|
123 |
+
# convert into half-precision if necessary
|
124 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
125 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
126 |
+
|
127 |
+
return self.weight * hidden_states
|
128 |
+
|
129 |
+
class FlashT5DenseAct(nn.Module):
|
130 |
+
def __init__(self, config: FlashT5Config):
|
131 |
+
super().__init__()
|
132 |
+
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
|
133 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
134 |
+
self.act = torch.nn.GELU(approximate='tanh') if config.use_gelu_act else torch.nn.ReLU()
|
135 |
+
|
136 |
+
def forward(self, hidden_states):
|
137 |
+
hidden_states = self.wi(hidden_states)
|
138 |
+
hidden_states = self.act(hidden_states)
|
139 |
+
hidden_states = self.dropout(hidden_states)
|
140 |
+
if (
|
141 |
+
isinstance(self.wo.weight, torch.Tensor)
|
142 |
+
and hidden_states.dtype != self.wo.weight.dtype
|
143 |
+
and self.wo.weight.dtype != torch.int8
|
144 |
+
):
|
145 |
+
hidden_states = hidden_states.to(self.wo.weight.dtype)
|
146 |
+
|
147 |
+
return hidden_states
|
148 |
+
|
149 |
+
class FlashT5DenseGatedAct(nn.Module):
|
150 |
+
def __init__(self, config: FlashT5Config):
|
151 |
+
super().__init__()
|
152 |
+
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
153 |
+
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
154 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
155 |
+
self.act = torch.nn.GELU(approximate='tanh') if config.use_gelu_act else torch.nn.ReLU()
|
156 |
+
|
157 |
+
self.use_triton_gated_mlp = config.use_triton_gated_mlp
|
158 |
+
if self.use_triton_gated_mlp and gated_mlp is None:
|
159 |
+
raise ImportError("gated_mlp is not available")
|
160 |
+
self.use_gelu_act = config.use_gelu_act
|
161 |
+
|
162 |
+
def forward(self, hidden_states):
|
163 |
+
|
164 |
+
if self.use_triton_gated_mlp:
|
165 |
+
return gated_mlp(hidden_states, self.wi_0.weight, self.wi_1.weight, self.use_gelu_act)
|
166 |
+
|
167 |
+
hidden_act = self.act(self.wi_0(hidden_states))
|
168 |
+
hidden_linear = self.wi_1(hidden_states)
|
169 |
+
hidden_states = hidden_act * hidden_linear
|
170 |
+
hidden_states = self.dropout(hidden_states)
|
171 |
+
|
172 |
+
return hidden_states
|
173 |
+
|
174 |
+
class FlashT5LayerFF(nn.Module):
|
175 |
+
def __init__(self, config: FlashT5Config):
|
176 |
+
super().__init__()
|
177 |
+
if config.use_glu_mlp:
|
178 |
+
self.act = FlashT5DenseGatedAct(config)
|
179 |
+
else:
|
180 |
+
self.act = FlashT5DenseAct(config)
|
181 |
+
|
182 |
+
self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
|
183 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
184 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
185 |
+
|
186 |
+
def forward(self, hidden_states):
|
187 |
+
forwarded_states = self.layer_norm(hidden_states).type_as(hidden_states)
|
188 |
+
forwarded_states = self.act(forwarded_states)
|
189 |
+
forwarded_states = self.wo(forwarded_states)
|
190 |
+
hidden_states = hidden_states + self.dropout(forwarded_states)
|
191 |
+
return hidden_states
|
192 |
+
|
193 |
+
|
194 |
+
class FlashT5Attention(nn.Module, ModuleUtilsMixin):
|
195 |
+
def __init__(self, config: FlashT5Config, has_positional_encoding=False, is_causal=False):
|
196 |
+
super().__init__()
|
197 |
+
self.is_decoder = config.is_decoder
|
198 |
+
self.has_positional_encoding = has_positional_encoding
|
199 |
+
self.is_causal = is_causal
|
200 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
201 |
+
self.relative_attention_max_distance = config.relative_attention_max_distance
|
202 |
+
self.d_model = config.d_model
|
203 |
+
self.key_value_proj_dim = config.d_kv
|
204 |
+
self.n_heads = config.num_heads
|
205 |
+
self.p_dropout = config.attention_dropout_rate
|
206 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
207 |
+
self.use_flash_attention = config.use_flash_attention
|
208 |
+
self.position_encoding_type = config.position_encoding_type
|
209 |
+
self.max_sequence_length = config.max_sequence_length
|
210 |
+
self.softmax_scale = 1.0/math.sqrt(self.n_heads)
|
211 |
+
self.use_full_bias_size = config.use_full_bias_size
|
212 |
+
|
213 |
+
if self.use_flash_attention == "triton" and flash_attention_triton is None:
|
214 |
+
raise ImportError("flash_attention_triton is not available")
|
215 |
+
elif self.use_flash_attention == "fa2" and flash_attn_func is None:
|
216 |
+
raise ImportError("Flash Attention 2 is not available")
|
217 |
+
|
218 |
+
assert (self.p_dropout == 0.0) or (self.use_flash_attention != "triton"), "Triton attention does not support dropout"
|
219 |
+
|
220 |
+
self.pe_encoding = None
|
221 |
+
if self.position_encoding_type == "ALiBi" and has_positional_encoding:
|
222 |
+
# build alibi matrix with an upper bound on seq length
|
223 |
+
self.pe_encoding = ALiBiPositionalEncoding(self.max_sequence_length, self.n_heads, config.alibi_mode, config.use_randomized_position_encoding)
|
224 |
+
elif self.position_encoding_type == "t5" and has_positional_encoding:
|
225 |
+
self.pe_encoding = RelativePositionalEncoding(self.relative_attention_num_buckets, self.relative_attention_max_distance, self.n_heads, self.max_sequence_length, config.use_randomized_position_encoding)
|
226 |
+
elif self.position_encoding_type == "RoPE":
|
227 |
+
self.pe_encoding = RotaryPositionalEncoding(int(self.key_value_proj_dim * config.rotary_emb_fraction), self.max_sequence_length, config.rotary_base, config.rotary_interleaved, config.rotary_scale_base, config.use_randomized_position_encoding)
|
228 |
+
|
229 |
+
self.Wq = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
230 |
+
self.Wk = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
231 |
+
self.Wv = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
232 |
+
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
233 |
+
|
234 |
+
def forward(
|
235 |
+
self,
|
236 |
+
hidden_states,
|
237 |
+
mask=None,
|
238 |
+
key_value_states=None,
|
239 |
+
position_bias=None,
|
240 |
+
):
|
241 |
+
"""
|
242 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
243 |
+
"""
|
244 |
+
# Input is (batch_size, seq_length, dim)
|
245 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
246 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
247 |
+
key_length = seq_length if key_value_states is None else key_value_states.shape[1]
|
248 |
+
q = self.Wq(hidden_states)
|
249 |
+
if key_value_states is None:
|
250 |
+
k = self.Wk(hidden_states)
|
251 |
+
v = self.Wv(hidden_states)
|
252 |
+
else:
|
253 |
+
k = self.Wk(key_value_states)
|
254 |
+
v = self.Wv(key_value_states)
|
255 |
+
|
256 |
+
q = q.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim)
|
257 |
+
k = k.view(batch_size, key_length, self.n_heads, self.key_value_proj_dim)
|
258 |
+
v = v.view(batch_size, key_length, self.n_heads, self.key_value_proj_dim)
|
259 |
+
|
260 |
+
if position_bias is None and self.pe_encoding is not None:
|
261 |
+
q, k, v, position_bias = self.pe_encoding(q, k, v)
|
262 |
+
|
263 |
+
if position_bias is not None and self.use_full_bias_size and (self.use_flash_attention == "fa2" or self.use_flash_attention == "triton"):
|
264 |
+
position_bias = position_bias.expand(q.shape[0], q.shape[2], q.shape[1], k.shape[1]).contiguous()
|
265 |
+
|
266 |
+
if self.use_flash_attention == "fa2":
|
267 |
+
output = flash_attn_func(q, k, v, dropout_p=self.p_dropout, softmax_scale=self.softmax_scale, attn_bias=position_bias, causal=self.is_causal)
|
268 |
+
elif self.use_flash_attention == "triton":
|
269 |
+
q = q.permute(0, 2, 1, 3)
|
270 |
+
k = k.permute(0, 2, 1, 3)
|
271 |
+
v = v.permute(0, 2, 1, 3)
|
272 |
+
output = flash_attention_triton(q, k, v, position_bias, self.is_causal, self.softmax_scale)
|
273 |
+
output = output.permute(0, 2, 1, 3)
|
274 |
+
else: # use flash attention
|
275 |
+
q = q.permute(0, 2, 1, 3)
|
276 |
+
k = k.permute(0, 2, 1, 3)
|
277 |
+
v = v.permute(0, 2, 1, 3)
|
278 |
+
output = attn_ref(q, k, v, position_bias, dropout_p=self.p_dropout, sm_scale=self.softmax_scale, causal=self.is_causal)
|
279 |
+
output = output.permute(0, 2, 1, 3)
|
280 |
+
|
281 |
+
output = self.o(output.reshape(output.shape[0], output.shape[1], self.inner_dim))
|
282 |
+
return (output, position_bias)
|
283 |
+
|
284 |
+
|
285 |
+
class FlashT5LayerSelfAttention(nn.Module):
|
286 |
+
def __init__(self, config, has_positional_encoding=False):
|
287 |
+
super().__init__()
|
288 |
+
self.self_attention = FlashT5Attention(config, has_positional_encoding=has_positional_encoding, is_causal=config.is_decoder)
|
289 |
+
self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
|
290 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
291 |
+
|
292 |
+
def forward(
|
293 |
+
self,
|
294 |
+
hidden_states,
|
295 |
+
attention_mask=None,
|
296 |
+
position_bias=None,
|
297 |
+
):
|
298 |
+
normed_hidden_states = self.layer_norm(hidden_states).type_as(hidden_states)
|
299 |
+
attention_output = self.self_attention(
|
300 |
+
normed_hidden_states,
|
301 |
+
mask=attention_mask,
|
302 |
+
position_bias=position_bias,
|
303 |
+
)
|
304 |
+
hidden_states = hidden_states + self.dropout(attention_output[0])
|
305 |
+
outputs = (hidden_states,) + attention_output[1:]
|
306 |
+
return outputs
|
307 |
+
|
308 |
+
|
309 |
+
class FlashT5LayerCrossAttention(nn.Module):
|
310 |
+
def __init__(self, config):
|
311 |
+
super().__init__()
|
312 |
+
self.cross_attention = FlashT5Attention(config, has_positional_encoding=False)
|
313 |
+
self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
|
314 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
315 |
+
|
316 |
+
def forward(
|
317 |
+
self,
|
318 |
+
hidden_states,
|
319 |
+
key_value_states,
|
320 |
+
attention_mask=None,
|
321 |
+
position_bias=None,
|
322 |
+
):
|
323 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
324 |
+
attention_output = self.cross_attention(
|
325 |
+
normed_hidden_states,
|
326 |
+
mask=attention_mask,
|
327 |
+
key_value_states=key_value_states,
|
328 |
+
position_bias=position_bias,
|
329 |
+
)
|
330 |
+
layer_output = hidden_states + self.dropout(attention_output[0])
|
331 |
+
outputs = (layer_output,) + attention_output[1:]
|
332 |
+
return outputs
|
333 |
+
|
334 |
+
|
335 |
+
class FlashT5Block(nn.Module):
|
336 |
+
def __init__(self, config, has_positional_encoding=False):
|
337 |
+
super().__init__()
|
338 |
+
self.is_decoder = config.is_decoder
|
339 |
+
|
340 |
+
self.self_attention_layer = FlashT5LayerSelfAttention(config, has_positional_encoding=has_positional_encoding)
|
341 |
+
|
342 |
+
if self.is_decoder:
|
343 |
+
self.cross_attention_layer = FlashT5LayerCrossAttention(config)
|
344 |
+
|
345 |
+
self.ff_layer = FlashT5LayerFF(config)
|
346 |
+
|
347 |
+
def forward(
|
348 |
+
self,
|
349 |
+
hidden_states,
|
350 |
+
attention_mask=None,
|
351 |
+
position_bias=None,
|
352 |
+
encoder_hidden_states=None,
|
353 |
+
encoder_attention_mask=None,
|
354 |
+
encoder_decoder_position_bias=None,
|
355 |
+
):
|
356 |
+
self_attention_outputs = self.self_attention_layer(
|
357 |
+
hidden_states,
|
358 |
+
attention_mask=attention_mask,
|
359 |
+
position_bias=position_bias,
|
360 |
+
)
|
361 |
+
hidden_states = self_attention_outputs[0]
|
362 |
+
attention_outputs = self_attention_outputs[1:] # Relative position weights
|
363 |
+
|
364 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
365 |
+
cross_attention_outputs = self.cross_attention_layer(
|
366 |
+
hidden_states,
|
367 |
+
key_value_states=encoder_hidden_states,
|
368 |
+
attention_mask=encoder_attention_mask,
|
369 |
+
position_bias=encoder_decoder_position_bias,
|
370 |
+
)
|
371 |
+
hidden_states = cross_attention_outputs[0]
|
372 |
+
|
373 |
+
# Keep relative position weights
|
374 |
+
attention_outputs = attention_outputs + cross_attention_outputs[1:]
|
375 |
+
|
376 |
+
# Apply Feed Forward layer
|
377 |
+
hidden_states = self.ff_layer(hidden_states)
|
378 |
+
|
379 |
+
outputs = (hidden_states,) + attention_outputs
|
380 |
+
return outputs # hidden-states, (self-attention position bias), (cross-attention position bias)
|
381 |
+
|
382 |
+
class FlashT5Stack(nn.Module, ModuleUtilsMixin):
|
383 |
+
def __init__(self, config, embed_tokens):
|
384 |
+
super().__init__()
|
385 |
+
assert embed_tokens is not None
|
386 |
+
|
387 |
+
self.config = config
|
388 |
+
self.embed_tokens = embed_tokens
|
389 |
+
self.is_decoder = config.is_decoder
|
390 |
+
self.use_flash_attention = config.use_flash_attention
|
391 |
+
|
392 |
+
self.block = nn.ModuleList(
|
393 |
+
[FlashT5Block(config, has_positional_encoding=bool(i == 0)) for i in range(config.num_layers)]
|
394 |
+
)
|
395 |
+
|
396 |
+
self.final_layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
|
397 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
398 |
+
|
399 |
+
def forward(
|
400 |
+
self,
|
401 |
+
input_ids=None,
|
402 |
+
attention_mask=None,
|
403 |
+
encoder_hidden_states=None,
|
404 |
+
encoder_attention_mask=None,
|
405 |
+
inputs_embeds=None,
|
406 |
+
head_mask=None,
|
407 |
+
cross_attn_head_mask=None,
|
408 |
+
past_key_values=None,
|
409 |
+
use_cache=None,
|
410 |
+
output_attentions=None,
|
411 |
+
output_hidden_states=None,
|
412 |
+
return_dict=None) -> BaseModelOutput:
|
413 |
+
input_shape = input_ids.size()
|
414 |
+
batch_size, seq_length = input_shape
|
415 |
+
|
416 |
+
if inputs_embeds is None:
|
417 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
418 |
+
|
419 |
+
if torch.is_autocast_enabled() and input_ids.device.type == 'cuda':
|
420 |
+
inputs_embeds = inputs_embeds.to(torch.get_autocast_gpu_dtype())
|
421 |
+
|
422 |
+
# Masking
|
423 |
+
if attention_mask is None:
|
424 |
+
attention_mask = torch.ones(batch_size, seq_length, device=inputs_embeds.device, dtype=torch.bool)
|
425 |
+
|
426 |
+
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
|
427 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
428 |
+
encoder_attention_mask = torch.ones(
|
429 |
+
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.bool
|
430 |
+
)
|
431 |
+
|
432 |
+
position_bias = None
|
433 |
+
encoder_decoder_position_bias = None
|
434 |
+
|
435 |
+
hidden_states = self.dropout(inputs_embeds)
|
436 |
+
|
437 |
+
for _, layer_module in enumerate(self.block):
|
438 |
+
layer_outputs = layer_module(
|
439 |
+
hidden_states,
|
440 |
+
attention_mask=attention_mask,
|
441 |
+
position_bias=position_bias,
|
442 |
+
encoder_hidden_states=encoder_hidden_states,
|
443 |
+
encoder_attention_mask=encoder_attention_mask,
|
444 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
445 |
+
)
|
446 |
+
|
447 |
+
# We share the position biases between the layers - the first layer store them
|
448 |
+
position_bias = layer_outputs[1]
|
449 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
450 |
+
encoder_decoder_position_bias = layer_outputs[2]
|
451 |
+
|
452 |
+
hidden_states = layer_outputs[0]
|
453 |
+
|
454 |
+
hidden_states = self.final_layer_norm(hidden_states).type_as(hidden_states)
|
455 |
+
hidden_states = self.dropout(hidden_states)
|
456 |
+
|
457 |
+
return BaseModelOutput(
|
458 |
+
last_hidden_state=hidden_states
|
459 |
+
)
|
460 |
+
|
461 |
+
|
462 |
+
class FlashT5PreTrainedModel(PreTrainedModel):
|
463 |
+
"""
|
464 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
465 |
+
models.
|
466 |
+
"""
|
467 |
+
|
468 |
+
config_class = FlashT5Config
|
469 |
+
base_model_prefix = "transformer"
|
470 |
+
is_parallelizable = False
|
471 |
+
supports_gradient_checkpointing = True
|
472 |
+
_no_split_modules = ["FlashT5Block"]
|
473 |
+
_keep_in_fp32_modules = []
|
474 |
+
|
475 |
+
def _init_weights(self, module):
|
476 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
477 |
+
if isinstance(module, FlashT5LayerNorm):
|
478 |
+
module.weight.data.fill_(factor * 1.0)
|
479 |
+
elif isinstance(module, (FlashT5ForConditionalGeneration)):
|
480 |
+
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
481 |
+
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
|
482 |
+
module.lm_head.weight.data.normal_(mean=0.0, std=factor * self.config.d_model ** -0.5)
|
483 |
+
elif isinstance(module, FlashT5DenseGatedAct):
|
484 |
+
d_ff, d_model = module.wi_0.weight.data.size()
|
485 |
+
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
486 |
+
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
487 |
+
elif isinstance(module, FlashT5LayerFF):
|
488 |
+
d_ff, d_model = module.wo.weight.data.size()
|
489 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5))
|
490 |
+
elif isinstance(module, FlashT5Attention):
|
491 |
+
d_model = self.config.d_model
|
492 |
+
key_value_proj_dim = self.config.d_kv
|
493 |
+
n_heads = self.config.num_heads
|
494 |
+
module.Wq.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
495 |
+
module.Wk.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
496 |
+
module.Wv.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
497 |
+
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
498 |
+
if module.has_positional_encoding:
|
499 |
+
if hasattr(module.pe_encoding, "relative_attention_bias"):
|
500 |
+
module.pe_encoding.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
501 |
+
|
502 |
+
def _shift_right(self, input_ids):
|
503 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
504 |
+
pad_token_id = self.config.pad_token_id
|
505 |
+
|
506 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
507 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
508 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
509 |
+
|
510 |
+
# replace possible -100 values in labels by `pad_token_id`
|
511 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
512 |
+
|
513 |
+
return shifted_input_ids
|
514 |
+
|
515 |
+
|
516 |
+
class FlashT5Model(FlashT5PreTrainedModel):
|
517 |
+
def __init__(self, config: FlashT5Config):
|
518 |
+
super().__init__(config)
|
519 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
520 |
+
|
521 |
+
encoder_config = copy.deepcopy(config)
|
522 |
+
encoder_config.is_decoder = False
|
523 |
+
encoder_config.use_cache = False
|
524 |
+
encoder_config.is_encoder_decoder = False
|
525 |
+
self.encoder = FlashT5Stack(encoder_config, self.shared)
|
526 |
+
|
527 |
+
decoder_config = copy.deepcopy(config)
|
528 |
+
decoder_config.is_decoder = True
|
529 |
+
decoder_config.is_encoder_decoder = False
|
530 |
+
decoder_config.num_layers = config.num_decoder_layers
|
531 |
+
self.decoder = FlashT5Stack(decoder_config, self.shared)
|
532 |
+
|
533 |
+
# Initialize weights and apply final processing
|
534 |
+
self.post_init()
|
535 |
+
|
536 |
+
# Model parallel
|
537 |
+
self.model_parallel = False
|
538 |
+
self.device_map = None
|
539 |
+
|
540 |
+
def get_input_embeddings(self):
|
541 |
+
return self.shared
|
542 |
+
|
543 |
+
def set_input_embeddings(self, new_embeddings):
|
544 |
+
self.shared = new_embeddings
|
545 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
546 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
547 |
+
|
548 |
+
def get_encoder(self):
|
549 |
+
return self.encoder
|
550 |
+
|
551 |
+
def get_decoder(self):
|
552 |
+
return self.decoder
|
553 |
+
|
554 |
+
def forward(
|
555 |
+
self,
|
556 |
+
input_ids: Optional[torch.LongTensor] = None,
|
557 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
558 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
559 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
560 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
561 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
562 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
563 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
564 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
565 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
566 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
567 |
+
use_cache: Optional[bool] = None,
|
568 |
+
output_attentions: Optional[bool] = None,
|
569 |
+
output_hidden_states: Optional[bool] = None,
|
570 |
+
return_dict: Optional[bool] = None,
|
571 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
572 |
+
|
573 |
+
# Encode if needed (training, first prediction pass)
|
574 |
+
if encoder_outputs is None:
|
575 |
+
encoder_outputs = self.encoder(
|
576 |
+
input_ids=input_ids,
|
577 |
+
attention_mask=attention_mask,
|
578 |
+
inputs_embeds=inputs_embeds
|
579 |
+
)
|
580 |
+
|
581 |
+
hidden_states = encoder_outputs[0]
|
582 |
+
|
583 |
+
# Decode
|
584 |
+
decoder_outputs = self.decoder(
|
585 |
+
input_ids=decoder_input_ids,
|
586 |
+
attention_mask=decoder_attention_mask,
|
587 |
+
inputs_embeds=decoder_inputs_embeds,
|
588 |
+
encoder_hidden_states=hidden_states,
|
589 |
+
encoder_attention_mask=attention_mask
|
590 |
+
)
|
591 |
+
|
592 |
+
return Seq2SeqModelOutput(
|
593 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
594 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
595 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
596 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
597 |
+
)
|
598 |
+
|
599 |
+
class FlashT5ForConditionalGeneration(FlashT5PreTrainedModel):
|
600 |
+
|
601 |
+
def __init__(self, config: FlashT5Config):
|
602 |
+
super().__init__(config)
|
603 |
+
config.is_encoder_decoder = False
|
604 |
+
assert not config.tie_word_embeddings
|
605 |
+
|
606 |
+
self.config = config
|
607 |
+
self.model_dim = config.d_model
|
608 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
609 |
+
|
610 |
+
encoder_config = copy.deepcopy(config)
|
611 |
+
encoder_config.is_decoder = False
|
612 |
+
self.encoder = FlashT5Stack(encoder_config, self.shared)
|
613 |
+
|
614 |
+
decoder_config = copy.deepcopy(config)
|
615 |
+
decoder_config.is_decoder = True
|
616 |
+
decoder_config.num_layers = config.num_decoder_layers
|
617 |
+
self.decoder = FlashT5Stack(decoder_config, self.shared)
|
618 |
+
|
619 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
620 |
+
|
621 |
+
self.loss_fct = FlashT5CrossEntropyLoss(z_loss_factor=config.z_loss,
|
622 |
+
label_smoothing=config.label_smoothing,
|
623 |
+
use_triton_crossentropy=config.use_triton_crossentropy)
|
624 |
+
|
625 |
+
# Initialize weights and apply final processing
|
626 |
+
self.post_init()
|
627 |
+
|
628 |
+
def prepare_inputs_for_generation(
|
629 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
630 |
+
):
|
631 |
+
# do nothing
|
632 |
+
model_inputs = {"input_ids": input_ids, "attention_mask": attention_mask}
|
633 |
+
|
634 |
+
return model_inputs
|
635 |
+
|
636 |
+
def get_input_embeddings(self):
|
637 |
+
return self.shared
|
638 |
+
|
639 |
+
def set_input_embeddings(self, value):
|
640 |
+
self.shared = value
|
641 |
+
|
642 |
+
def generate(
|
643 |
+
self,
|
644 |
+
input_ids: Optional[torch.LongTensor] = None,
|
645 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
646 |
+
max_length = 32,
|
647 |
+
**kwargs,
|
648 |
+
) -> torch.LongTensor:
|
649 |
+
"""
|
650 |
+
input_ids: B x L_encoder, int64
|
651 |
+
attention_mask: B x L_encoder, int64
|
652 |
+
1 for tokens to attend to, 0 for tokens to ignore
|
653 |
+
|
654 |
+
Generation:
|
655 |
+
Starts with 0, ends with 1, padding is 0
|
656 |
+
|
657 |
+
# For 20 input/outputs, the diff between my implementation and HF is 9.8s vs 11.4s
|
658 |
+
"""
|
659 |
+
B, _ = input_ids.size()
|
660 |
+
labels = torch.zeros(B, 1, dtype=torch.long, device=input_ids.device)
|
661 |
+
encoder_outputs = None
|
662 |
+
|
663 |
+
for _ in range(max_length):
|
664 |
+
out = self.forward(
|
665 |
+
input_ids=input_ids,
|
666 |
+
attention_mask=attention_mask,
|
667 |
+
decoder_input_ids=labels,
|
668 |
+
encoder_outputs=encoder_outputs,
|
669 |
+
)
|
670 |
+
encoder_outputs = out.encoder_outputs
|
671 |
+
top_labels = out.logits[:, -1].argmax(-1).unsqueeze(-1)
|
672 |
+
labels = torch.cat([labels, top_labels], dim=-1)
|
673 |
+
|
674 |
+
if (labels == 1).sum(-1).clamp(min=0, max=1).sum().item() == B:
|
675 |
+
break
|
676 |
+
|
677 |
+
labels[:, -1] = 1
|
678 |
+
|
679 |
+
# Mask out the padding, i.e., all positions after the first 1 with 0
|
680 |
+
B, L = labels.size()
|
681 |
+
mask = torch.arange(L, device=labels.device).unsqueeze(0) <= (labels == 1).long().argmax(-1).unsqueeze(-1)
|
682 |
+
labels = labels.masked_fill(~mask, 0)
|
683 |
+
|
684 |
+
return labels
|
685 |
+
|
686 |
+
def forward(
|
687 |
+
self,
|
688 |
+
input_ids: Optional[torch.LongTensor] = None,
|
689 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
690 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
691 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
692 |
+
labels: Optional[torch.LongTensor] = None,
|
693 |
+
encoder_outputs = None,
|
694 |
+
) -> Seq2SeqLMOutput:
|
695 |
+
"""
|
696 |
+
input_ids: B x L_encoder, int64
|
697 |
+
attention_mask: B x L_encoder, int64
|
698 |
+
1 for tokens to attend to, 0 for tokens to ignore
|
699 |
+
labels: B x L_decoder, int64
|
700 |
+
"""
|
701 |
+
if encoder_outputs is None:
|
702 |
+
encoder_outputs = self.encoder(
|
703 |
+
input_ids=input_ids,
|
704 |
+
attention_mask=attention_mask,
|
705 |
+
)
|
706 |
+
|
707 |
+
hidden_states = encoder_outputs.hidden_states
|
708 |
+
|
709 |
+
if labels is not None and decoder_input_ids is None:
|
710 |
+
decoder_input_ids = self._shift_right(labels)
|
711 |
+
|
712 |
+
decoder_outputs = self.decoder(
|
713 |
+
input_ids=decoder_input_ids,
|
714 |
+
attention_mask=decoder_attention_mask,
|
715 |
+
encoder_hidden_states=hidden_states,
|
716 |
+
encoder_attention_mask=attention_mask,
|
717 |
+
)
|
718 |
+
|
719 |
+
sequence_output = decoder_outputs[0]
|
720 |
+
lm_logits = self.lm_head(sequence_output)
|
721 |
+
|
722 |
+
loss = None
|
723 |
+
if labels is not None:
|
724 |
+
loss, z_loss = self.loss_fct(lm_logits, labels)
|
725 |
+
loss += z_loss
|
726 |
+
|
727 |
+
return Seq2SeqLMOutput(
|
728 |
+
loss=loss,
|
729 |
+
logits=lm_logits,
|
730 |
+
encoder_outputs=encoder_outputs,
|
731 |
+
)
|
732 |
+
|
733 |
+
|
734 |
+
|
735 |
+
class FlashT5EncoderModel(FlashT5PreTrainedModel):
|
736 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight"]
|
737 |
+
|
738 |
+
def __init__(self, config: FlashT5Config):
|
739 |
+
super().__init__(config)
|
740 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
741 |
+
|
742 |
+
encoder_config = copy.deepcopy(config)
|
743 |
+
encoder_config.use_cache = False
|
744 |
+
encoder_config.is_encoder_decoder = False
|
745 |
+
self.encoder = FlashT5Stack(encoder_config, self.shared)
|
746 |
+
|
747 |
+
# Initialize weights and apply final processing
|
748 |
+
self.post_init()
|
749 |
+
|
750 |
+
# Model parallel
|
751 |
+
self.model_parallel = False
|
752 |
+
self.device_map = None
|
753 |
+
|
754 |
+
|
755 |
+
def parallelize(self, device_map=None):
|
756 |
+
warnings.warn(
|
757 |
+
"`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
758 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
759 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
|
760 |
+
" 'block.1': 1, ...}",
|
761 |
+
FutureWarning,
|
762 |
+
)
|
763 |
+
self.device_map = (
|
764 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
765 |
+
if device_map is None
|
766 |
+
else device_map
|
767 |
+
)
|
768 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
769 |
+
self.encoder.parallelize(self.device_map)
|
770 |
+
self.model_parallel = True
|
771 |
+
|
772 |
+
def deparallelize(self):
|
773 |
+
warnings.warn(
|
774 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
775 |
+
FutureWarning,
|
776 |
+
)
|
777 |
+
self.encoder.deparallelize()
|
778 |
+
self.encoder = self.encoder.to("cpu")
|
779 |
+
self.model_parallel = False
|
780 |
+
self.device_map = None
|
781 |
+
torch.cuda.empty_cache()
|
782 |
+
|
783 |
+
def get_input_embeddings(self):
|
784 |
+
return self.shared
|
785 |
+
|
786 |
+
def set_input_embeddings(self, new_embeddings):
|
787 |
+
self.shared = new_embeddings
|
788 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
789 |
+
|
790 |
+
def get_encoder(self):
|
791 |
+
return self.encoder
|
792 |
+
|
793 |
+
def _prune_heads(self, heads_to_prune):
|
794 |
+
"""
|
795 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
796 |
+
class PreTrainedModel
|
797 |
+
"""
|
798 |
+
for layer, heads in heads_to_prune.items():
|
799 |
+
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
|
800 |
+
|
801 |
+
def forward(
|
802 |
+
self,
|
803 |
+
input_ids: Optional[torch.LongTensor] = None,
|
804 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
805 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
806 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
807 |
+
output_attentions: Optional[bool] = None,
|
808 |
+
output_hidden_states: Optional[bool] = None,
|
809 |
+
return_dict: Optional[bool] = None,
|
810 |
+
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
|
811 |
+
r"""
|
812 |
+
Returns:
|
813 |
+
|
814 |
+
Example:
|
815 |
+
|
816 |
+
```python
|
817 |
+
>>> from transformers import AutoTokenizer, T5EncoderModel
|
818 |
+
|
819 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
820 |
+
>>> model = T5EncoderModel.from_pretrained("t5-small")
|
821 |
+
>>> input_ids = tokenizer(
|
822 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
823 |
+
... ).input_ids # Batch size 1
|
824 |
+
>>> outputs = model(input_ids=input_ids)
|
825 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
826 |
+
```"""
|
827 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
828 |
+
|
829 |
+
encoder_outputs = self.encoder(
|
830 |
+
input_ids=input_ids,
|
831 |
+
attention_mask=attention_mask,
|
832 |
+
inputs_embeds=inputs_embeds,
|
833 |
+
head_mask=head_mask,
|
834 |
+
output_attentions=output_attentions,
|
835 |
+
output_hidden_states=output_hidden_states,
|
836 |
+
return_dict=return_dict,
|
837 |
+
)
|
838 |
+
|
839 |
+
return encoder_outputs
|
positional_encoding.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from einops import rearrange, repeat
|
5 |
+
|
6 |
+
from flash_attn.layers.rotary import apply_rotary_emb_qkv_, apply_rotary_emb_func, apply_rotary_emb_kv_
|
7 |
+
|
8 |
+
class RelativePositionalEncoding(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, relative_attention_num_buckets, relative_attention_max_distance, n_heads, max_sequence_length, bidirectional=True, randomized_position=False):
|
11 |
+
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
15 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
16 |
+
self.n_heads = n_heads
|
17 |
+
self.max_sequence_length = max_sequence_length
|
18 |
+
self.bidirectional = bidirectional
|
19 |
+
self.randomized_position = randomized_position
|
20 |
+
|
21 |
+
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
|
22 |
+
|
23 |
+
@staticmethod
|
24 |
+
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
25 |
+
"""
|
26 |
+
Adapted from Mesh Tensorflow:
|
27 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
28 |
+
|
29 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
30 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
31 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
32 |
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
33 |
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
34 |
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
35 |
+
|
36 |
+
Args:
|
37 |
+
relative_position: an int32 Tensor
|
38 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
39 |
+
num_buckets: an integer
|
40 |
+
max_distance: an integer
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
44 |
+
"""
|
45 |
+
relative_buckets = 0
|
46 |
+
if bidirectional:
|
47 |
+
num_buckets //= 2
|
48 |
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
49 |
+
relative_position = torch.abs(relative_position)
|
50 |
+
else:
|
51 |
+
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
52 |
+
# now relative_position is in the range [0, inf)
|
53 |
+
|
54 |
+
# half of the buckets are for exact increments in positions
|
55 |
+
max_exact = num_buckets // 2
|
56 |
+
is_small = relative_position < max_exact
|
57 |
+
|
58 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
59 |
+
relative_position_if_large = max_exact + (
|
60 |
+
torch.log(relative_position.float() / max_exact)
|
61 |
+
/ math.log(max_distance / max_exact)
|
62 |
+
* (num_buckets - max_exact)
|
63 |
+
).to(torch.long)
|
64 |
+
relative_position_if_large = torch.min(
|
65 |
+
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
|
66 |
+
)
|
67 |
+
|
68 |
+
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
|
69 |
+
return relative_buckets
|
70 |
+
|
71 |
+
def compute_bias(self, query_length, key_length, device=None):
|
72 |
+
"""Compute binned relative position bias"""
|
73 |
+
if device is None:
|
74 |
+
device = self.relative_attention_bias.weight.device
|
75 |
+
|
76 |
+
if self.randomized_position:
|
77 |
+
context_position = torch.arange(self.max_sequence_length, dtype=torch.long, device=device)
|
78 |
+
context_indices_rand, _ = torch.sort(torch.randperm(self.max_sequence_length)[:query_length])
|
79 |
+
context_indices_rand[0] = 0 # root the first element of the sequence
|
80 |
+
context_position = context_position[context_indices_rand][:, None]
|
81 |
+
|
82 |
+
memory_position = torch.arange(self.max_sequence_length, dtype=torch.long, device=device)
|
83 |
+
memory_indices_rand, _ = torch.sort(torch.randperm(self.max_sequence_length)[:key_length])
|
84 |
+
memory_indices_rand[0] = 0 # root the first element of the sequence
|
85 |
+
memory_position = memory_position[memory_indices_rand][None, :]
|
86 |
+
else:
|
87 |
+
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
|
88 |
+
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
|
89 |
+
|
90 |
+
relative_position = memory_position - context_position # shape (query_length, key_length)
|
91 |
+
|
92 |
+
relative_position_bucket = self._relative_position_bucket(
|
93 |
+
relative_position, # shape (query_length, key_length)
|
94 |
+
bidirectional=self.bidirectional,
|
95 |
+
num_buckets=self.relative_attention_num_buckets,
|
96 |
+
max_distance=self.relative_attention_max_distance,
|
97 |
+
)
|
98 |
+
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
99 |
+
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
100 |
+
return values
|
101 |
+
|
102 |
+
def forward(self, q, k=None, v=None):
|
103 |
+
|
104 |
+
query_length = q.shape[1]
|
105 |
+
key_length = k.shape[1] if k is not None else query_length
|
106 |
+
bias = self.compute_bias(query_length, key_length, device=q.device).contiguous().to(q.dtype)
|
107 |
+
|
108 |
+
return q, k, v, bias
|
109 |
+
|
110 |
+
|
111 |
+
class ALiBiPositionalEncoding(nn.Module):
|
112 |
+
|
113 |
+
def __init__(self, max_sequence_length, num_heads, mode='symetric', randomized_position=False):
|
114 |
+
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
self.max_sequence_length = max_sequence_length
|
118 |
+
self.num_heads = num_heads
|
119 |
+
self.mode = mode
|
120 |
+
self.randomized_position = randomized_position
|
121 |
+
|
122 |
+
self.alibi_bias = self.build_alibi_bias_matrix(num_heads, max_sequence_length, mode)
|
123 |
+
|
124 |
+
@staticmethod
|
125 |
+
def fill_with_neg_inf(t):
|
126 |
+
"""FP16-compatible function that fills a tensor with -inf."""
|
127 |
+
return t.float().fill_(float("-inf")).type_as(t)
|
128 |
+
|
129 |
+
def get_slopes(self, n):
|
130 |
+
|
131 |
+
def get_slopes_power_of_2(n):
|
132 |
+
start = (2**(-2**-(math.log2(n)-3)))
|
133 |
+
ratio = start
|
134 |
+
return [start*ratio**i for i in range(n)]
|
135 |
+
|
136 |
+
if math.log2(n).is_integer():
|
137 |
+
return get_slopes_power_of_2(n) #In the paper, we only train models that have 2^a heads for some a. This function has
|
138 |
+
else: #some good properties that only occur when the input is a power of 2. To maintain that even
|
139 |
+
closest_power_of_2 = 2**math.floor(math.log2(n)) #when the number of heads is not a power of 2, we use this workaround.
|
140 |
+
return get_slopes_power_of_2(closest_power_of_2) + self.get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2]
|
141 |
+
|
142 |
+
def build_symetric_alibi_bias_matrix(self, num_heads, maxpos):
|
143 |
+
|
144 |
+
context_position = torch.arange(maxpos)[:, None]
|
145 |
+
memory_position = torch.arange(maxpos)[None, :]
|
146 |
+
|
147 |
+
relative_position = memory_position - context_position
|
148 |
+
relative_position = torch.abs(relative_position).unsqueeze(0).expand(num_heads, -1,-1)
|
149 |
+
|
150 |
+
slopes = torch.Tensor(self.get_slopes(num_heads)) * -1
|
151 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * relative_position
|
152 |
+
return alibi.view(1, num_heads, maxpos, maxpos)
|
153 |
+
|
154 |
+
def build_asymetric_alibi_bias_matrix(self, num_heads, maxpos):
|
155 |
+
_future_mask_right = torch.triu(self.fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1).unsqueeze(0).repeat(num_heads // 2, 1, 1)
|
156 |
+
_future_mask_left = torch.tril(self.fill_with_neg_inf(torch.zeros([maxpos, maxpos])), -1).unsqueeze(0).repeat(num_heads // 2, 1, 1)
|
157 |
+
|
158 |
+
nonsym_mask = torch.cat((_future_mask_right, _future_mask_left), dim = 0).unsqueeze(0)
|
159 |
+
slopes = torch.Tensor(self.get_slopes(num_heads // 2)) * -1
|
160 |
+
|
161 |
+
context_position = torch.arange(maxpos)[:, None]
|
162 |
+
memory_position = torch.arange(maxpos)[None, :]
|
163 |
+
|
164 |
+
relative_position = memory_position - context_position
|
165 |
+
relative_position = torch.abs(relative_position).unsqueeze(0).expand(num_heads // 2, -1,-1)
|
166 |
+
|
167 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * relative_position
|
168 |
+
alibi = alibi.view(1, num_heads // 2, maxpos, maxpos)
|
169 |
+
alibi = alibi.repeat(1, 2, 1, 1)
|
170 |
+
|
171 |
+
return alibi.view(1, num_heads, maxpos, maxpos) + nonsym_mask.view(1, num_heads, maxpos, maxpos)
|
172 |
+
|
173 |
+
|
174 |
+
def build_alibi_bias_matrix(self, num_heads, maxpos, mode='symetric'):
|
175 |
+
if mode == 'symetric':
|
176 |
+
return self.build_symetric_alibi_bias_matrix(num_heads, maxpos)
|
177 |
+
elif mode == 'asymetric':
|
178 |
+
return self.build_asymetric_alibi_bias_matrix(num_heads, maxpos)
|
179 |
+
else:
|
180 |
+
raise ValueError("ALiBi mode " + mode + " is not implemented.")
|
181 |
+
|
182 |
+
def forward(self, q, k=None, v=None):
|
183 |
+
|
184 |
+
query_length = q.shape[1]
|
185 |
+
key_length = k.shape[1] if k is not None else query_length
|
186 |
+
assert (self.alibi_bias.shape[1] < query_length) & (self.alibi_bias.shape[1] < key_length), "Sequence length larger than allowed alibi bound"
|
187 |
+
|
188 |
+
if self.randomized_position:
|
189 |
+
query_indices_rand, _ = torch.sort(torch.randperm(self.max_sequence_length)[:query_length])
|
190 |
+
key_indices_rand, _ = torch.sort(torch.randperm(self.max_sequence_length)[:key_length])
|
191 |
+
|
192 |
+
# ground sequences
|
193 |
+
query_indices_rand[0] = 0
|
194 |
+
key_indices_rand[0] = 0
|
195 |
+
|
196 |
+
bias = self.alibi_bias[:, :, query_indices_rand, key_indices_rand].to(q.device)
|
197 |
+
|
198 |
+
else:
|
199 |
+
bias = self.alibi_bias[:, :, :query_length, :key_length].to(q.device)
|
200 |
+
|
201 |
+
return q, k, v, bias.to(q.dtype).contiguous()
|
202 |
+
|
203 |
+
class RotaryPositionalEncoding(nn.Module):
|
204 |
+
|
205 |
+
def __init__(self, dim,
|
206 |
+
max_sequence_length,
|
207 |
+
base=10000.0,
|
208 |
+
interleaved=False,
|
209 |
+
scale_base=None,
|
210 |
+
randomized_position=False):
|
211 |
+
|
212 |
+
super().__init__()
|
213 |
+
|
214 |
+
self.max_sequence_length = max_sequence_length
|
215 |
+
self.randomized_position = randomized_position
|
216 |
+
|
217 |
+
self.dim = dim
|
218 |
+
self.base = base
|
219 |
+
self.interleaved = interleaved
|
220 |
+
self.scale_base = scale_base
|
221 |
+
|
222 |
+
inv_freq = self._compute_inv_freq()
|
223 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
224 |
+
|
225 |
+
scale = (
|
226 |
+
(torch.arange(0, dim, 2, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
227 |
+
if scale_base is not None
|
228 |
+
else None
|
229 |
+
)
|
230 |
+
self.register_buffer("scale", scale, persistent=False)
|
231 |
+
|
232 |
+
self._cos_cached = None
|
233 |
+
self._sin_cached = None
|
234 |
+
self._cos_k_cached = None
|
235 |
+
self._sin_k_cached = None
|
236 |
+
|
237 |
+
def _compute_inv_freq(self, device=None):
|
238 |
+
return 1.0 / (
|
239 |
+
self.base
|
240 |
+
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
|
241 |
+
)
|
242 |
+
|
243 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
244 |
+
# Reset the tables if the sequence length has changed,
|
245 |
+
# if we're on a new device (possibly due to tracing for instance),
|
246 |
+
# or if we're switching from inference mode to training
|
247 |
+
if (
|
248 |
+
self._cos_cached is None
|
249 |
+
or self._cos_cached.device != device
|
250 |
+
or self._cos_cached.dtype != dtype
|
251 |
+
or (self.training and self._cos_cached.is_inference())
|
252 |
+
):
|
253 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
254 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
255 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
256 |
+
inv_freq = self._compute_inv_freq(device=device)
|
257 |
+
|
258 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
259 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
260 |
+
t = torch.arange(seqlen, device=device, dtype=dtype)
|
261 |
+
freqs = torch.outer(t, inv_freq)
|
262 |
+
if self.scale is None:
|
263 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
264 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
265 |
+
self._cos_k_cached = None
|
266 |
+
self._sin_k_cached = None
|
267 |
+
else:
|
268 |
+
power = (
|
269 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
270 |
+
- seqlen // 2
|
271 |
+
) / self.scale_base
|
272 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
273 |
+
# We want the multiplication by scale to happen in fp32
|
274 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
275 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
276 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
277 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
278 |
+
|
279 |
+
def forward(self, q, k=None, v=None):
|
280 |
+
|
281 |
+
if self._cos_cached is None:
|
282 |
+
self._update_cos_sin_cache(self.max_sequence_length, device=q.device, dtype=q.dtype)
|
283 |
+
|
284 |
+
if k is None and v is None:
|
285 |
+
q = apply_rotary_emb_qkv_(
|
286 |
+
q,
|
287 |
+
self._cos_cached,
|
288 |
+
self._sin_cached,
|
289 |
+
self._cos_k_cached,
|
290 |
+
self._sin_k_cached,
|
291 |
+
interleaved=self.interleaved,
|
292 |
+
seqlen_offsets=0
|
293 |
+
)
|
294 |
+
elif v is None and k is not None:
|
295 |
+
q = apply_rotary_emb_func(
|
296 |
+
q,
|
297 |
+
self._cos_cached,
|
298 |
+
self._sin_cached,
|
299 |
+
interleaved=self.interleaved,
|
300 |
+
inplace=True,
|
301 |
+
seqlen_offsets=0
|
302 |
+
)
|
303 |
+
|
304 |
+
k = apply_rotary_emb_kv_(
|
305 |
+
k,
|
306 |
+
self._cos_cached if self._cos_k_cached is None else self._cos_k_cached,
|
307 |
+
self._sin_cached if self._sin_k_cached is None else self._sin_k_cached,
|
308 |
+
interleaved=self.interleaved,
|
309 |
+
seqlen_offsets=0,
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
q = apply_rotary_emb_func(
|
313 |
+
q,
|
314 |
+
self._cos_cached,
|
315 |
+
self._sin_cached,
|
316 |
+
interleaved=self.interleaved,
|
317 |
+
inplace=True,
|
318 |
+
seqlen_offsets=0
|
319 |
+
)
|
320 |
+
|
321 |
+
k = apply_rotary_emb_func(
|
322 |
+
k,
|
323 |
+
self._cos_cached if self._cos_k_cached is None else self._cos_k_cached,
|
324 |
+
self._sin_cached if self._sin_k_cached is None else self._sin_k_cached,
|
325 |
+
interleaved=self.interleaved,
|
326 |
+
seqlen_offsets=0,
|
327 |
+
)
|
328 |
+
|
329 |
+
v = apply_rotary_emb_func(
|
330 |
+
v,
|
331 |
+
self._cos_cached if self._cos_k_cached is None else self._cos_k_cached,
|
332 |
+
self._sin_cached if self._sin_k_cached is None else self._sin_k_cached,
|
333 |
+
interleaved=self.interleaved,
|
334 |
+
seqlen_offsets=0,
|
335 |
+
)
|
336 |
+
|
337 |
+
return q, k, v, None
|
rms_norm.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
|
2 |
+
# Copyright 2024 CATIE. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
# Modifications to the orignal file
|
17 |
+
# - add weights gradients
|
18 |
+
# - remove the mask if size is a power of 2
|
19 |
+
# - support for torch.compile
|
20 |
+
|
21 |
+
import triton
|
22 |
+
import triton.language as tl
|
23 |
+
import torch
|
24 |
+
|
25 |
+
|
26 |
+
MAX_FUSED_SIZE = 65536
|
27 |
+
next_power_of_2 = triton.next_power_of_2
|
28 |
+
|
29 |
+
def calculate_settings(n):
|
30 |
+
BLOCK_SIZE = next_power_of_2(n)
|
31 |
+
if BLOCK_SIZE > MAX_FUSED_SIZE:
|
32 |
+
raise RuntimeError(f"Cannot launch Triton kernel since n = {n} exceeds "\
|
33 |
+
f"the maximum CUDA blocksize = {MAX_FUSED_SIZE}.")
|
34 |
+
num_warps = 4
|
35 |
+
if BLOCK_SIZE >= 32768: num_warps = 32
|
36 |
+
elif BLOCK_SIZE >= 8192: num_warps = 16
|
37 |
+
elif BLOCK_SIZE >= 2048: num_warps = 8
|
38 |
+
return BLOCK_SIZE, num_warps
|
39 |
+
|
40 |
+
|
41 |
+
@triton.jit
|
42 |
+
def _rms_layernorm_forward(
|
43 |
+
Y, Y_row_stride,
|
44 |
+
X, X_row_stride,
|
45 |
+
W, W_row_stride,
|
46 |
+
r, r_row_stride,
|
47 |
+
n_cols, eps,
|
48 |
+
BLOCK_SIZE : tl.constexpr,
|
49 |
+
IS_EVEN_X: tl.constexpr
|
50 |
+
):
|
51 |
+
"""
|
52 |
+
Fast RMS Layernorm kernel
|
53 |
+
Inspiration from a Triton tutorial:
|
54 |
+
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
55 |
+
"""
|
56 |
+
row_idx = tl.program_id(0)
|
57 |
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
58 |
+
mask = col_offsets < n_cols
|
59 |
+
|
60 |
+
Y += row_idx * Y_row_stride
|
61 |
+
X += row_idx * X_row_stride
|
62 |
+
r += row_idx * r_row_stride
|
63 |
+
|
64 |
+
if IS_EVEN_X:
|
65 |
+
X_row = tl.load(X + col_offsets).to(tl.float32)
|
66 |
+
W_row = tl.load(W + col_offsets)
|
67 |
+
else:
|
68 |
+
X_row = tl.load(X + col_offsets, mask=mask, other=0).to(tl.float32)
|
69 |
+
W_row = tl.load(W + col_offsets, mask=mask, other=0)
|
70 |
+
|
71 |
+
row_var = tl.sum(X_row * X_row, axis = 0) / n_cols
|
72 |
+
inv_var = tl.math.rsqrt(row_var + eps)
|
73 |
+
tl.store(r, inv_var)
|
74 |
+
normed = X_row * inv_var
|
75 |
+
normed = normed.to(W_row.dtype) # Exact copy from HF
|
76 |
+
output = normed * W_row
|
77 |
+
|
78 |
+
if IS_EVEN_X:
|
79 |
+
tl.store(Y + col_offsets, output)
|
80 |
+
else:
|
81 |
+
tl.store(Y + col_offsets, output, mask=mask)
|
82 |
+
|
83 |
+
@triton.jit
|
84 |
+
def _rms_layernorm_backward(
|
85 |
+
dY, dY_row_stride,
|
86 |
+
X, X_row_stride,
|
87 |
+
W, W_row_stride,
|
88 |
+
r, r_row_stride,
|
89 |
+
dW, dW_row_stride,
|
90 |
+
dX, dX_row_stride,
|
91 |
+
n_cols, eps,
|
92 |
+
BLOCK_SIZE : tl.constexpr,
|
93 |
+
IS_EVEN_X: tl.constexpr
|
94 |
+
):
|
95 |
+
"""
|
96 |
+
Fast RMS Layernorm kernel for the backward pass
|
97 |
+
Inspiration from a Triton tutorial:
|
98 |
+
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
99 |
+
"""
|
100 |
+
row_idx = tl.program_id(0)
|
101 |
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
102 |
+
mask = col_offsets < n_cols
|
103 |
+
|
104 |
+
dY += row_idx * dY_row_stride
|
105 |
+
X += row_idx * X_row_stride
|
106 |
+
r += row_idx * r_row_stride
|
107 |
+
dW += row_idx * dW_row_stride
|
108 |
+
dX += row_idx * dX_row_stride
|
109 |
+
|
110 |
+
if IS_EVEN_X:
|
111 |
+
dY_row = tl.load(dY + col_offsets).to(tl.float32)
|
112 |
+
X_row = tl.load(X + col_offsets).to(tl.float32)
|
113 |
+
W_row = tl.load(W + col_offsets).to(tl.float32)
|
114 |
+
else:
|
115 |
+
dY_row = tl.load(dY + col_offsets, mask=mask, other=0).to(tl.float32)
|
116 |
+
X_row = tl.load(X + col_offsets, mask=mask, other=0).to(tl.float32)
|
117 |
+
W_row = tl.load(W + col_offsets, mask=mask, other=0).to(tl.float32)
|
118 |
+
|
119 |
+
# Get saved row variance
|
120 |
+
inv_var = tl.load(r).to(tl.float32)
|
121 |
+
normed = X_row * inv_var
|
122 |
+
dW_row = dY_row * normed
|
123 |
+
|
124 |
+
dY_W = dY_row * W_row
|
125 |
+
rowsum_dY_normed = tl.sum(dY_W * normed, axis = 0)
|
126 |
+
output = inv_var/n_cols * (n_cols*dY_W - normed*rowsum_dY_normed)
|
127 |
+
|
128 |
+
if IS_EVEN_X:
|
129 |
+
tl.store(dW + col_offsets, dW_row)
|
130 |
+
tl.store(dX + col_offsets, output)
|
131 |
+
else:
|
132 |
+
tl.store(dW + col_offsets, dW_row, mask=mask)
|
133 |
+
tl.store(dX + col_offsets, output, mask=mask)
|
134 |
+
|
135 |
+
|
136 |
+
# Wrapper for triton kernel for torch.compile - should be unecessary for PyTorch 2.3 ?
|
137 |
+
torch.library.define("flasht5::rmsnorm_triton_fwd", "(Tensor X, Tensor W, float eps, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> (Tensor, Tensor)")
|
138 |
+
|
139 |
+
@torch.library.impl("flasht5::rmsnorm_triton_fwd", "default")
|
140 |
+
def rmsnorm_triton_fwd(X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
|
141 |
+
Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device="cuda")
|
142 |
+
r = torch.empty(n_rows, dtype=torch.float32, device="cuda")
|
143 |
+
|
144 |
+
_rms_layernorm_forward[(n_rows,)](
|
145 |
+
Y, Y.stride(0),
|
146 |
+
X, X.stride(0),
|
147 |
+
W, W.stride(0),
|
148 |
+
r, r.stride(0),
|
149 |
+
n_cols, eps,
|
150 |
+
BLOCK_SIZE=BLOCK_SIZE,
|
151 |
+
IS_EVEN_X=((n_cols % BLOCK_SIZE) == 0),
|
152 |
+
num_warps=num_warps
|
153 |
+
)
|
154 |
+
|
155 |
+
return Y, r
|
156 |
+
|
157 |
+
|
158 |
+
@torch.library.impl_abstract("flasht5::rmsnorm_triton_fwd", rmsnorm_triton_fwd)
|
159 |
+
def rmsnorm_triton_fwd_abstract(X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
|
160 |
+
Y = X.new_empty((n_rows, n_cols))
|
161 |
+
r = X.new_empty((n_rows))
|
162 |
+
return Y, r
|
163 |
+
|
164 |
+
torch.library.define("flasht5::rmsnorm_triton_bwd", "(Tensor dY, Tensor r, Tensor X, Tensor W, float eps, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> (Tensor, Tensor)")
|
165 |
+
|
166 |
+
@torch.library.impl("flasht5::rmsnorm_triton_bwd", "default")
|
167 |
+
def rmsnorm_triton_bwd(dY, r, X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
|
168 |
+
|
169 |
+
dX = torch.empty_like(dY)
|
170 |
+
dW = torch.empty_like(dY)
|
171 |
+
|
172 |
+
_rms_layernorm_backward[(n_rows,)](
|
173 |
+
dY, dY.stride(0),
|
174 |
+
X, X.stride(0),
|
175 |
+
W, 1,
|
176 |
+
r, 1,
|
177 |
+
dW, dW.stride(0),
|
178 |
+
dX, dX.stride(0),
|
179 |
+
n_cols, eps,
|
180 |
+
BLOCK_SIZE=BLOCK_SIZE,
|
181 |
+
IS_EVEN_X=((n_cols % BLOCK_SIZE) == 0),
|
182 |
+
num_warps=num_warps,
|
183 |
+
)
|
184 |
+
|
185 |
+
return dX, dW
|
186 |
+
|
187 |
+
|
188 |
+
@torch.library.impl_abstract("flasht5::rmsnorm_triton_bwd", rmsnorm_triton_bwd)
|
189 |
+
def rmsnorm_triton_bwd_abstract(dY, r, X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
|
190 |
+
return torch.empty_like(dY), torch.empty_like(dY)
|
191 |
+
|
192 |
+
|
193 |
+
class Fast_RMS_Layernorm(torch.autograd.Function):
|
194 |
+
@staticmethod
|
195 |
+
def forward(ctx, X, W, eps):
|
196 |
+
shape = X.shape
|
197 |
+
dim = shape[-1]
|
198 |
+
X = X.view(-1, dim)
|
199 |
+
n_rows, n_cols = X.shape
|
200 |
+
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
201 |
+
|
202 |
+
Y, r = torch.ops.flasht5.rmsnorm_triton_fwd(X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps)
|
203 |
+
|
204 |
+
ctx.eps = eps
|
205 |
+
ctx.BLOCK_SIZE = BLOCK_SIZE
|
206 |
+
ctx.num_warps = num_warps
|
207 |
+
ctx.save_for_backward(X, W, r)
|
208 |
+
return Y.view(*shape)
|
209 |
+
|
210 |
+
@staticmethod
|
211 |
+
def backward(ctx, dY):
|
212 |
+
shape = dY.shape
|
213 |
+
dim = shape[-1]
|
214 |
+
dY = dY.view(-1, dim)
|
215 |
+
X, W, r = ctx.saved_tensors
|
216 |
+
n_rows, n_cols = dY.shape
|
217 |
+
dX = torch.empty_like(dY)
|
218 |
+
dW = torch.empty_like(dY)
|
219 |
+
|
220 |
+
dW, dX = torch.ops.flasht5.rmsnorm_triton_bwd(dY, r, X, W, ctx.eps, n_cols, n_rows, ctx.BLOCK_SIZE, ctx.num_warps)
|
221 |
+
|
222 |
+
dX = dX.view(*shape)
|
223 |
+
return dX, dW.sum(0), None
|
224 |
+
|
225 |
+
def fast_rms_layernorm(X, W, eps):
|
226 |
+
out = Fast_RMS_Layernorm.apply(X, W, eps)
|
227 |
+
return out
|