File size: 31,857 Bytes
f225bf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
# Copyright 2023 BAAI
# Copyright 2024 CATIE
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modifications to the orignal file
# - Support for biases following https://github.com/FlagOpen/FlagAttention/pull/5
# - Support for shape (1,1,q,k) biases

import math
import torch
import triton
import triton.language as tl

# Wrapper for triton kernel for torch.compile - should be unecessary for PyTorch 2.3 ?
torch.library.define("flasht5::flash_attn_v2_fwd", "(Tensor q, Tensor k, Tensor v, Tensor bias, bool causal, float sm_scale, int BLOCK_M, int BLOCK_N, int num_warps, int num_stages) -> (Tensor, Tensor)")

@torch.library.impl("flasht5::flash_attn_v2_fwd", "default")
def flash_attn_v2_fwd(q, k, v, bias, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):

    B, H, M, D = q.shape
    N = k.shape[2]
    P_SEQ = N - M
    larger_m = M > N

    # Trick to support shape such as (1, 1, seqlen_q, seqlen_k)
    bias_batch_stride = bias.stride(0) if bias is not None else 0
    bias_heads_stride = bias.stride(1) if bias is not None else 0
    if bias is not None:
        if (bias.shape[0] != q.shape[0]) and (bias.shape[0] == 1):
            bias_batch_stride = 0
        if (bias.shape[1] != q.shape[1]) and (bias.shape[1] == 1):
            bias_heads_stride = 0

    divisible_m = M % BLOCK_M == 0
    divisible_n = N % BLOCK_N == 0
    # consider using 3d grid to avoid div & rem
    grid = (triton.cdiv(M, BLOCK_M), H, B)
    o = torch.empty_like(q)
    L = torch.empty((B, H, M), device=q.device, dtype=torch.float32)

    _fwd_kernel[grid](
        q, k, v, bias, sm_scale,
        L, o,
        q.stride(0), q.stride(1), q.stride(2), q.stride(3),
        k.stride(0), k.stride(1), k.stride(2), k.stride(3),
        v.stride(0), v.stride(1), v.stride(2), v.stride(3),
        o.stride(0), o.stride(1), o.stride(2), o.stride(3),
        bias_batch_stride, bias_heads_stride,
        bias.stride(2) if bias is not None else 0,
        bias.stride(3) if bias is not None else 0,
        B, H, M, N, P_SEQ,
        BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_DMODEL=D,
        IS_CAUSAL=causal, LARGER_M=larger_m,
        DIVISIBLE_M=divisible_m, DIVISIBLE_N=divisible_n,
        HAS_BIAS=(bias is not None),
        num_warps=num_warps, num_stages=num_stages,
    )

    return o, L


@torch.library.impl_abstract("flasht5::flash_attn_v2_fwd", flash_attn_v2_fwd)
def flash_attn_v2_fwd_abstract(q, k, v, bias, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):
    B, H, M, D = q.shape
    o = torch.empty_like(q)
    L = torch.empty((B, H, M), dtype=torch.float32, device=q.device)

    return o, L

torch.library.define("flasht5::flash_attn_v2_bwd", "(Tensor o, Tensor do, Tensor q, Tensor k, Tensor v, Tensor bias, Tensor L, bool causal, float sm_scale, int BLOCK_M, int BLOCK_N, int num_warps, int num_stages) -> (Tensor, Tensor, Tensor, Tensor)")

@torch.library.impl("flasht5::flash_attn_v2_bwd", "default")
def flash_attn_v2_bwd(o, do, q, k, v, bias, L, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):

    B, H, M, D = q.shape
    N = k.shape[2]
    P_SEQ = N - M
    larger_m = M > N

    divisible_m = M % BLOCK_M == 0
    divisible_n = N % BLOCK_N == 0

    # Trick to support shape such as (1, 1, seqlen_q, seqlen_k)
    bias_batch_stride = bias.stride(0) if bias is not None else 0
    bias_heads_stride = bias.stride(1) if bias is not None else 0
    if bias is not None:
        if (bias.shape[0] != q.shape[0]) and (bias.shape[0] == 1):
            bias_batch_stride = 0
        if (bias.shape[1] != q.shape[1]) and (bias.shape[1] == 1):
            bias_heads_stride = 0

    delta = torch.empty_like(L)
    grid = (triton.cdiv(M, BLOCK_M), H, B)

    _bwd_preprocess[grid](
        o, do,
        delta,
        o.stride(0), o.stride(1), o.stride(2), o.stride(3),
        do.stride(0), do.stride(1), do.stride(2), do.stride(3),
        delta.stride(0), delta.stride(1), delta.stride(2),
        M,
        BLOCK_M=BLOCK_M, D_HEAD=D,
        DIVISIBLE_M=divisible_m,
    )

    dk = torch.empty_like(k)
    dv = torch.empty_like(v)

    HAS_BIAS = bias is not None
    RETURN_DS = HAS_BIAS
    USE_DS_ATOMIC_ADD = (bias_batch_stride == 0) or (bias_heads_stride == 0)
    ds = None
    if RETURN_DS:
        ds = torch.empty_like(bias)
        if USE_DS_ATOMIC_ADD:
            ds = ds.zero_()

    grid = (triton.cdiv(N, BLOCK_N), H, B)
    _bwd_kv_kernel[grid](
        q, k, v, bias, sm_scale, do,
        dk, dv, ds,
        L, delta,
        q.stride(0), q.stride(1), q.stride(2), q.stride(3),
        k.stride(0), k.stride(1), k.stride(2), k.stride(3),
        v.stride(0), v.stride(1), v.stride(2), v.stride(3),
        bias_batch_stride, bias_heads_stride,
        bias.stride(2) if HAS_BIAS else 0,
        bias.stride(3) if HAS_BIAS else 0,
        do.stride(0), do.stride(1), do.stride(2), do.stride(3),
        dk.stride(0), dk.stride(1), dk.stride(2), dk.stride(3),
        dv.stride(0), dv.stride(1), dv.stride(2), dv.stride(3),
        B, H, M, N, P_SEQ,
        BLOCK_M=BLOCK_M, BLOCK_DMODEL=D, BLOCK_N=BLOCK_N, CAUSAL=causal,
        DIVISIBLE_M=divisible_m, DIVISIBLE_N=divisible_n,
        HAS_BIAS=HAS_BIAS,
        RETURN_DS=RETURN_DS, USE_DS_ATOMIC_ADD=USE_DS_ATOMIC_ADD,
        num_stages=num_stages, num_warps=num_warps,
    )

    dq = torch.empty_like(q)
    grid = (triton.cdiv(M, BLOCK_M), H, B)
    _bwd_q_kernel[grid](
        q, k, v, bias, sm_scale, do,
        dq,
        L, delta,
        q.stride(0), q.stride(1), q.stride(2), q.stride(3),
        k.stride(0), k.stride(1), k.stride(2), k.stride(3),
        v.stride(0), v.stride(1), v.stride(2), v.stride(3),
        bias_batch_stride, bias_heads_stride,
        bias.stride(2) if HAS_BIAS else 0,
        bias.stride(3) if HAS_BIAS else 0,
        do.stride(0), do.stride(1), do.stride(2), do.stride(3),
        dq.stride(0), dq.stride(1), dq.stride(2), dq.stride(3),
        B, H, M, N, P_SEQ,
        BLOCK_M=BLOCK_M, BLOCK_DMODEL=D, BLOCK_N=BLOCK_N,
        CAUSAL=causal, LARGER_M=larger_m,
        DIVISIBLE_M=divisible_m, DIVISIBLE_N=divisible_n,
        HAS_BIAS=HAS_BIAS,
        num_stages=num_stages, num_warps = num_warps,
    )

    return dq, dk, dv, ds

@torch.library.impl_abstract("flasht5::flash_attn_v2_bwd", flash_attn_v2_bwd)
def cross_entropy_triton_bwd_abstract(o, do, q, k, v, bias, L, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):
    dq = torch.empty_like(q)
    dk = torch.empty_like(k)
    dv = torch.empty_like(v)
    ds = torch.empty_like(bias) if bias is not None else None

    return dq, dk, dv, ds

class FlashAttention(torch.autograd.Function):
    @staticmethod
    def forward(ctx, q, k, v, bias, causal, sm_scale):
        Dq, Dk, Dv = q.shape[-1], k.shape[-1], v.shape[-1]

        assert Dq == Dk == Dv
        assert Dk in {16, 32, 64, 128}

        B, H, M, D = q.shape
        N = k.shape[2]

        if sm_scale is None:
            sm_scale = 1. / math.sqrt(D)

        config = get_fwd_config(B, H, M, N, D, causal)
        BLOCK_M, BLOCK_N, num_stages, num_warps = config

        o, L = torch.ops.flasht5.flash_attn_v2_fwd(q, k, v, bias, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages)

        # autograd context maintenance
        ctx.save_for_backward(q, k, v, bias, o, L)
        ctx.sm_scale = sm_scale
        ctx.causal = causal

        return o

    @staticmethod
    def backward(ctx, do, *ignored):
        q, k, v, bias, o, L = ctx.saved_tensors
        sm_scale = ctx.sm_scale
        causal = ctx.causal

        B, H, M, D = q.shape
        N = k.shape[2]

        if sm_scale is None:
            sm_scale = 1. / math.sqrt(D)

        config = get_bwd_config(B, H, M, N, D, causal)
        BLOCK_M, BLOCK_N, num_stages, num_warps = config

        dq, dk, dv, ds = torch.ops.flasht5.flash_attn_v2_bwd(o, do, q, k, v, bias, L, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages)

        return dq, dk, dv, ds, None, None, None, None


def attention(q, k, v, bias, causal=False, sm_scale=None):
    """
    An implementation of FlashAttention v2(https://arxiv.org/abs/2307.08691).

    Arguments:
        q(torch.Tensor): The first queries. The shape is (batch_size, nheads, seqlen_q, headdim).
        k(torch.Tensor): The first keys. The shape is (batch_size, nheads, seqlen_k, headdim).
        v(torch.Tensor): The values. The shape is (batch_size, nheads, seqlen_k, headdim).
        causal(bool): Whether causal masking is applied to attention scores before applying softmax.
        sm_scale(float): The scaling of attention scores before applying softmax.

    Returns:
        out(torch.Tensor): The output. The shape is (batch_size, nheads, seqlen_q, headdim).
    """
    return FlashAttention.apply(q, k, v, bias, causal, sm_scale)


# --------------------------- Forward ---------------------------
# NOTE: this function can be overwritten at runtime to use your custom config
def get_fwd_config(B, H, M, N, D, causal):
    if torch.cuda.get_device_capability() == (8, 0):
        if not causal:
            if D <= 64:
                BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 64, 3, 4
            else:
                if M <= 1024:
                    BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 3, 4
                else:
                    BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 128, 3, 8
        else:
            if D <= 64:
                BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 64, 4, 4
            else:
                if M <= 1024:
                    BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 2, 4
                else:
                    BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 128, 3, 8
    elif torch.cuda.get_device_capability() == (8, 6):
        if not causal:
            if D <= 64:
                BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 64, 3, 4
            else:
                BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 2, 4
        else: # causal
            if D <= 64:
                BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 3, 4
            else:
                BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 2, 4
    else:
        BLOCK_M, BLOCK_N, num_stages, num_warps = 32, 32, 1, 4
    return (BLOCK_M, BLOCK_N, num_stages, num_warps)


@triton.jit
def _fwd_kernel(
    Q, K, V, B, sm_scale,
    L, O,
    stride_qz, stride_qh, stride_qm, stride_qk,
    stride_kz, stride_kh, stride_kn, stride_kk,
    stride_vz, stride_vh, stride_vn, stride_vk,
    stride_oz, stride_oh, stride_om, stride_ok,
    stride_bz, stride_bh, stride_bm, stride_bn,
    Z, H, M, N, P_SEQ,
    BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
    IS_CAUSAL: tl.constexpr, LARGER_M: tl.constexpr,
    DIVISIBLE_M: tl.constexpr, DIVISIBLE_N: tl.constexpr,
    HAS_BIAS: tl.constexpr,
):
    input_dtype = Q.dtype.element_ty
    # -- grid id --
    start_m = tl.program_id(0)
    off_h = tl.program_id(1)
    off_z = tl.program_id(2)

    # scale sm_scale by log_2(e) and use
    # 2^x instead of exp in the loop because CSE and LICM
    # don't work as expected with `exp` in the loop
    log2e: tl.constexpr = 1.4426950408889634

    # offset pointers for (batch, head)
    Q += off_z * stride_qz + off_h * stride_qh
    K += off_z * stride_kz + off_h * stride_kh
    V += off_z * stride_vz + off_h * stride_vh
    O += off_z * stride_oz + off_h * stride_oh
    if HAS_BIAS:
        B += off_z * stride_bz + off_h * stride_bh
    L += (off_z * H + off_h) * M # l's shape is (B, H, M)

    offs_m_base = tl.arange(0, BLOCK_M)
    offs_m = start_m * BLOCK_M + offs_m_base
    offs_n_base = tl.arange(0, BLOCK_N)
    offs_k = tl.arange(0, BLOCK_DMODEL)

    # initialize pointers to value-like data
    q_ptrs = Q + (offs_m[:, None] * stride_qm + offs_k[None, :] * stride_qk) # (BLOCK_M, BLOCK_DMODEL)
    o_ptrs = O + (offs_m[:, None] * stride_om + offs_k[None, :] * stride_ok) # (BLOCK_M, BLOCK_DMODEL)
    l_ptrs = L + offs_m

    # initialize pointer to m and l, fp32 for accumulators
    m_i = tl.full([BLOCK_M], value=-float("inf"), dtype=tl.float32)
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)

    # load q
    mask_m = offs_m < M
    if DIVISIBLE_M:
        q = tl.load(q_ptrs, cache_modifier=".cg")
    else:
        q = tl.load(q_ptrs, mask=mask_m[:, None], cache_modifier=".cg")

    #Dot I trick: to place q in registers, it saves shared memory
    if BLOCK_DMODEL < 128:
        I = tl.where(offs_k[:, None] == offs_k,
                     tl.full((BLOCK_DMODEL, BLOCK_DMODEL), 1.0, dtype=input_dtype),
                     tl.full((BLOCK_DMODEL, BLOCK_DMODEL), 0.0, dtype=input_dtype))
        q = tl.dot(q, I).to(input_dtype)
    # else:
    #     I = tl.where(offs_m_base[:, None] == offs_m_base,
    #                  tl.full((BLOCK_M, BLOCK_M), 1.0, dtype=input_dtype),
    #                  tl.full((BLOCK_M, BLOCK_M), 0.0, dtype=input_dtype))
    #     q = tl.dot(I, q).to(input_dtype)

    # NOTE: Loop-Bound-For-N
    # The indices in m-dimension that this block may access is in `[start_m * BLOCK_M, (start_m + 1) * BLOCK_M)`.
    # According to the rule of causal masking, then max index in n-dimension that this block may access
    # is `P_SEQ + (start_m + 1) * BLOCK_M`.
    # However, the upper bound of index in n-dimension should never exceed the sequence length of k/v(`P_SEQ + N_CTX`).
    # `P_SEQ + (start_m + 1) * BLOCK_M` may be larger than `N`.
    # At this case, there would be illegal memory access when loading k & v tiles
    # if mask_n is not applied for loading(only when `DIVISIBLE_N`` is true).
    # See also https://github.com/FlagOpen/FlagAttention/pull/8
    if IS_CAUSAL:
        hi = tl.minimum(N, P_SEQ + (start_m + 1) * BLOCK_M)
        if LARGER_M:
            hi = tl.maximum(0, hi)
    else:
        hi = N

    # loop over k, v and update accumulators
    offs_n_init = offs_n_base
    k_ptrs = K + (offs_k[:, None] * stride_vk + offs_n_init[None, :] * stride_vn) # (BLOCK_DMODEL, BLOCK_N)
    v_ptrs = V + (offs_n_init[:, None] * stride_kn + offs_k[None, :] * stride_kk) # (BLOCK_N, BLOCK_DMODEL)
    if HAS_BIAS:
        bias_ptrs = B + (offs_m[:, None] * stride_bm + offs_n_init[None, :] * stride_bn) # (BLOCK_M, BLOCK_N)

    for start_n in range(0, hi, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)
        offs_n = start_n + offs_n_base

        # -- load k, v --
        mask_n = offs_n < N
        if DIVISIBLE_N:
            k = tl.load(k_ptrs, cache_modifier=".cg")
            v = tl.load(v_ptrs, cache_modifier=".cg")
        else:
            k = tl.load(k_ptrs, mask=mask_n[None, :], cache_modifier=".cg")
            v = tl.load(v_ptrs, mask=mask_n[:, None], cache_modifier=".cg")

        # -- load bias --
        if HAS_BIAS:
            if DIVISIBLE_M and DIVISIBLE_N:
                b = tl.load(bias_ptrs)
            else:
                b = tl.load(bias_ptrs, mask_m[:, None] & mask_n[None, :])

        # -- compute qk ---
        s = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        s += tl.dot(q, k) * sm_scale
        if HAS_BIAS:
            s += b

        if not DIVISIBLE_N:
            s = tl.where(mask_n[None, :], s, float("-inf"))
        if IS_CAUSAL:
            causal_mask = (P_SEQ + offs_m[:, None]) >= offs_n[None, :]
            s = tl.where(causal_mask, s, float("-inf"))

        # -- compute scaling constant ---
        m_i_new = tl.maximum(m_i, tl.max(s, 1))
        alpha = tl.math.exp2((m_i - m_i_new)*log2e)
        p = tl.math.exp2((s - m_i_new[:, None])*log2e)

        # -- scale and update acc: acc *= alpha[:, None]--
        acc *= alpha[:, None]
        acc += tl.dot(p.to(input_dtype), v)

        # -- update m_i and l_i --
        l_i = l_i * alpha + tl.sum(p, 1)
        m_i = m_i_new
        # update pointers
        k_ptrs += BLOCK_N * stride_kn
        v_ptrs += BLOCK_N * stride_vn
        if HAS_BIAS:
            bias_ptrs += BLOCK_N * stride_bn

    # write back l & o
    if IS_CAUSAL and LARGER_M:
        is_empty_line = (offs_m + P_SEQ) < 0
        acc = tl.where(is_empty_line[:, None], 0.0, acc * (1.0 / l_i[:, None]))
        l = tl.where(is_empty_line, float("-inf"), m_i + tl.log(l_i))
    else:
        acc = acc * (1.0 / l_i[:, None])
        l = m_i + tl.log(l_i) # log(normalizer)

    if DIVISIBLE_M:
        tl.store(l_ptrs, l, cache_modifier=".cg")
        tl.store(o_ptrs, acc.to(input_dtype), cache_modifier=".cg")
    else:
        tl.store(l_ptrs, l, mask=mask_m, cache_modifier=".cg")
        tl.store(o_ptrs, acc.to(input_dtype), mask=mask_m[:, None], cache_modifier=".cg")


# --------------------------- Backward ---------------------------
# NOTE: this function can be overwritten at runtime to use your custom config
def get_bwd_config(B, H, M, N, D, causal):
    if torch.cuda.get_device_capability() == (8, 0):
        if not causal:
            BLOCK_M = 128 if D <= 64 else 64
            BLOCK_N = 64
            num_stages = 2
            num_warps = 4
        else:
            BLOCK_M = 64
            BLOCK_N = 64
            num_stages = 3 if D <= 64 else 2
            num_warps = 4
    elif torch.cuda.get_device_capability() == (8, 6): # tune for RTX-3090, device_capability(8, 6)
        if not causal:
            if D <= 64:
                BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 2, 4
            else:
                BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 2, 8
        else:
            if D <= 64:
                BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 2, 4
            else:
                BLOCK_M, BLOCK_N, num_stages, num_warps = 32, 32, 2, 4
    else:
        BLOCK_M, BLOCK_N, num_stages, num_warps = 32, 32, 1, 4
    return (BLOCK_M, BLOCK_N, num_stages, num_warps)


@triton.jit
def _bwd_preprocess(
    Out, DO,
    Delta,
    stride_oz, stride_oh, stride_om, stride_ok,
    stride_doz, stride_doh, stride_dom, stride_dok,
    stride_dz, stride_dh, stride_dm,
    M,
    BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr,
    DIVISIBLE_M: tl.constexpr,
):
    off_h = tl.program_id(1)
    off_z = tl.program_id(2)
    Out += off_z * stride_oz + off_h * stride_oh
    DO += off_z * stride_doz + off_h * stride_doh
    Delta += off_z * stride_dz + off_h * stride_dh

    # compute (Out * Dout).sum() for vector interpretation
    off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
    off_n = tl.arange(0, D_HEAD)

    # load
    o_ptrs = Out + off_m[:, None] * stride_om + off_n[None, :] * stride_ok
    do_ptrs = DO + off_m[:, None] * stride_dom + off_n[None, :] * stride_dok

    if DIVISIBLE_M:
        o = tl.load(o_ptrs).to(tl.float32)
        do = tl.load(do_ptrs).to(tl.float32)
    else:
        mask_m = off_m < M
        o = tl.load(o_ptrs, mask=mask_m[:, None]).to(tl.float32)
        do = tl.load(do_ptrs, mask=mask_m[:, None]).to(tl.float32)

    # compute
    delta = tl.sum(o * do, axis=1)
    # write-back
    d_ptrs = Delta + off_m * stride_dm
    if DIVISIBLE_M:
        tl.store(d_ptrs, delta)
    else:
        tl.store(d_ptrs, delta, mask=mask_m)


@triton.jit
def _bwd_kv_kernel(
    Q, K, V, B, sm_scale, DO,
    DK, DV, DS,
    L,
    D,
    stride_qz, stride_qh, stride_qm, stride_qk,
    stride_kz, stride_kh, stride_kn, stride_kk,
    stride_vz, stride_vh, stride_vn, stride_vk,
    stride_bz, stride_bh, stride_bm, stride_bn,
    stride_doz, stride_doh, stride_dom, stride_dok,
    stride_dkz, stride_dkh, stride_dkn, stride_dkk,
    stride_dvz, stride_dvh, stride_dvn, stride_dvk,
    Z, H, M, N, P_SEQ,
    BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
    CAUSAL: tl.constexpr,
    DIVISIBLE_M: tl.constexpr, DIVISIBLE_N: tl.constexpr,
    HAS_BIAS: tl.constexpr,
    RETURN_DS: tl.constexpr, USE_DS_ATOMIC_ADD: tl.constexpr,
):
    input_dtype = Q.dtype.element_ty
    # -- grid id --
    start_n = tl.program_id(0)
    off_h = tl.program_id(1)
    off_z = tl.program_id(2)
    log2e: tl.constexpr = 1.4426950408889634
    qk_scale = sm_scale * log2e

    # offset pointers for (batch, head)
    Q += off_z * stride_qz + off_h * stride_qh
    K += off_z * stride_kz + off_h * stride_kh
    V += off_z * stride_vz + off_h * stride_vh
    if HAS_BIAS:
        B += off_z * stride_bz + off_h * stride_bh
    DO += off_z * stride_doz + off_h * stride_doh

    # offset pointers for batch/head
    DK += off_z * stride_dkz + off_h * stride_dkh
    DV += off_z * stride_dvz + off_h * stride_dvh
    if RETURN_DS:
        DS += off_z * stride_bz + off_h * stride_bh

    # offset pointers for batch/head
    D += (off_z * H + off_h) * M
    L += (off_z * H + off_h) * M

    if CAUSAL:
        lo = tl.maximum(start_n * BLOCK_N - P_SEQ, 0)
        lo = (lo // BLOCK_M) * BLOCK_M
    else:
        lo = 0

    offs_m_init = lo + tl.arange(0, BLOCK_M)
    offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
    offs_m_base = tl.arange(0, BLOCK_M)
    offs_k = tl.arange(0, BLOCK_DMODEL)

    # initialize pointers to value-like data
    q_ptrs = Q + (offs_m_init[:, None] * stride_qm + offs_k[None, :] * stride_qk) # (BLOCK_M, BLOCK_DMODEL)
    k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) # (BLOCK_N, BLOCK_DMODEL)
    v_ptrs = V + (offs_n[:, None] * stride_vn + offs_k[None, :] * stride_vk) # (BLOCK_N, BLOCK_DMODEL)
    do_ptrs = DO + (offs_m_init[:, None] * stride_dom + offs_k[None, :] * stride_dok) # (BLOCK_M, BLOCK_DMODEL)

    dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_k[None, :] * stride_dvk) # (BLOCK_N, BLOCK_DMODEL)
    dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_k[None, :] * stride_dkk) # (BLOCK_N, BLOCK_DMODEL)

    if HAS_BIAS:
        bias_ptrs = B + (offs_m_init[:, None] * stride_bm + offs_n[None, :] * stride_bn)

    if RETURN_DS:
        ds_ptrs = DS + (offs_m_init[:, None] * stride_bm + offs_n[None, :] * stride_bn)

    # k and v stay in SRAM throughout
    mask_n = offs_n < N
    if DIVISIBLE_N:
        v = tl.load(v_ptrs)
        k = tl.load(k_ptrs)
    else:
        v = tl.load(v_ptrs, mask=mask_n[:, None])
        k = tl.load(k_ptrs, mask=mask_n[:, None])

    # initialize dk amd dv
    dk = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
    dv = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)

    # loop over a col
    for start_m in range(lo, M, BLOCK_M):
        start_m = tl.multiple_of(start_m, BLOCK_M)
        offs_m = start_m + offs_m_base
        causal_mask = (P_SEQ + offs_m[:, None]) >= (offs_n[None, :]) # (BLOCK_M, BLOCK_N)

        # load q1, k1, q2, k2, v, do on-chip
        mask_m = offs_m < M
        if DIVISIBLE_M:
            q = tl.load(q_ptrs)
        else:
            valid_mask = mask_m[:, None] # & mask_n
            q = tl.load(q_ptrs, mask=mask_m[:, None])

        # load bias
        if HAS_BIAS:
            if DIVISIBLE_M and DIVISIBLE_N:
                b = tl.load(bias_ptrs)
            else:
                b = tl.load(bias_ptrs, mask=mask_m[:, None] & mask_n[None, :])

        # recompute p = softmax(qk * sm_scale, dim=-1)
        s = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        s += tl.dot(q, tl.trans(k)) * sm_scale

        if HAS_BIAS:
            s += b

        # NOTE: since softmax in backward is pointwise, the normalizer has been saved in fwd)
        # So masking on s is not needed.
        # s = tl.where(valid_mask, s , float("-inf"))
        # if CAUSAL:
        #     s = tl.where(causal_mask, s, float("-inf"))

        # -- recompute p ---
        if DIVISIBLE_M:
            l = tl.load(L + offs_m)
        else:
            l = tl.load(L + offs_m, mask=mask_m)
        p = tl.math.exp2((s - l[:, None])*log2e) # (BLOCK_M, BLOCK_N)

        if not DIVISIBLE_M:
            p = tl.where(valid_mask, p, 0.0)
        if CAUSAL:
            p = tl.where(causal_mask, p, 0.0)

        # compute dv = dot(p, do)
        if DIVISIBLE_M:
            do = tl.load(do_ptrs)
        else:
            do = tl.load(do_ptrs, mask=mask_m[:, None]) # (BLOCK_M, BLOCK_DMODEL)
        dv += tl.dot(tl.trans(p.to(do.dtype)), do) # (BLOCK_N, BLOCK_DMODEL)  # still correct

        # compute dp = dot(v, do)
        if DIVISIBLE_M:
            delta = tl.load(D + offs_m)
        else:
            delta = tl.load(D + offs_m, mask=mask_m)
        dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        dp += tl.dot(do, tl.trans(v))

        # compute ds = p * (dp - delta[:, None])
        ds = p * (dp - delta[:, None]) # (BLOCK_M, BLOCK_N)

        if not DIVISIBLE_M:
            ds = tl.where(valid_mask, ds, 0.0)
        if CAUSAL:
            ds = tl.where(causal_mask, ds, 0.0)
        ds = ds.to(input_dtype)

        if RETURN_DS:
            if DIVISIBLE_M and DIVISIBLE_N:
                if USE_DS_ATOMIC_ADD:
                    tl.atomic_add(ds_ptrs, ds)
                else:
                    tl.store(ds_ptrs, ds)
            else:
                if USE_DS_ATOMIC_ADD:
                    tl.atomic_add(ds_ptrs, ds, mask=mask_m[:, None] & mask_n[None, :])
                else:
                    tl.store(ds_ptrs, ds, mask=mask_m[:, None] & mask_n[None, :])

        # compute dk = dot(ds.T, q) masking
        dk += tl.dot(tl.trans(ds), q)

        # increment pointers
        q_ptrs += BLOCK_M * stride_qm
        do_ptrs += BLOCK_M * stride_dom
        if HAS_BIAS:
            bias_ptrs += BLOCK_M * stride_bm
        if RETURN_DS:
            ds_ptrs += BLOCK_M * stride_bm

    dk *= sm_scale
    if DIVISIBLE_N:
        tl.store(dk_ptrs, dk.to(input_dtype)) # (BLOCK_N, BLOCK_DMODEL)
        tl.store(dv_ptrs, dv.to(input_dtype)) # (BLOCK_N, BLOCK_DMODEL,)
    else:
        tl.store(dk_ptrs, dk.to(input_dtype), mask=mask_n[:, None]) # (BLOCK_N, BLOCK_DMODEL)
        tl.store(dv_ptrs, dv.to(input_dtype), mask=mask_n[:, None]) # (BLOCK_N, BLOCK_DMODEL,)


@triton.jit
def _bwd_q_kernel(
    Q, K, V, B, sm_scale, DO,
    DQ,
    L,
    D,
    stride_qz, stride_qh, stride_qm, stride_qk,
    stride_kz, stride_kh, stride_kn, stride_kk,
    stride_vz, stride_vh, stride_vn, stride_vk,
    stride_bz, stride_bh, stride_bm, stride_bn,
    stride_doz, stride_doh, stride_dom, stride_dok,
    stride_dqz, stride_dqh, stride_dqm, stride_dqk,
    Z, H, M, N, P_SEQ,
    BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
    CAUSAL: tl.constexpr, LARGER_M: tl.constexpr,
    DIVISIBLE_M: tl.constexpr, DIVISIBLE_N: tl.constexpr,
    HAS_BIAS: tl.constexpr
):
    input_dtype = Q.dtype.element_ty
    # -- grid id --
    start_m = tl.program_id(0)
    off_h = tl.program_id(1)
    off_z = tl.program_id(2)

    # scale sm_scale by log_2(e) and use
    # 2^x instead of exp in the loop because CSE and LICM
    # don't work as expected with `exp` in the loop
    log2e: tl.constexpr = 1.4426950408889634

    # offset pointers for (batch, head)
    Q += off_z * stride_qz + off_h * stride_qh
    K += off_z * stride_kz + off_h * stride_kh
    V += off_z * stride_vz + off_h * stride_vh
    if HAS_BIAS:
        B += off_z * stride_bz + off_h * stride_bh
    DO += off_z * stride_doz + off_h * stride_doh
    D += (off_z * H + off_h) * M
    L += (off_z * H + off_h) * M

    # offset pointers for batch/head
    DQ += off_z * stride_dqz + off_h * stride_dqh

    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n_base = tl.arange(0, BLOCK_N)
    offs_n_init = offs_n_base
    offs_k = tl.arange(0, BLOCK_DMODEL)

    # initialize pointers to value-like data
    q_ptrs = Q + (offs_m[:, None] * stride_qm + offs_k[None, :] * stride_qk) # (BLOCK_M, BLOCK_DMODEL)
    k_ptrs = K + (offs_n_init[:, None] * stride_kn + offs_k[None, :] * stride_kk) # (BLOCK_N, BLOCK_DMODEL)
    v_ptrs = V + (offs_n_init[:, None] * stride_vn + offs_k[None, :] * stride_vk) # (BLOCK_N, BLOCK_DMODEL)

    if HAS_BIAS:
        bias_ptrs = B + (offs_m[:, None] * stride_bm + offs_n_init[None, :] * stride_bn)

    dq_ptrs = DQ + (offs_m[:, None] * stride_dqm + offs_k[None, :] * stride_dqk) # (BLOCK_M, BLOCK_DMODEL)
    do_ptrs = DO + (offs_m[:, None] * stride_dom + offs_k[None, :] * stride_dok) # (BLOCK_M, BLOCK_DMODEL)

    # pointer to row-wise quantities in value-like data
    d_ptrs = D + offs_m
    l_ptrs = L + offs_m

    # load q: it will stay in SRAM throughout
    mask_m = offs_m < M
    if DIVISIBLE_M:
        q = tl.load(q_ptrs)
        do = tl.load(do_ptrs)
        delta = tl.load(d_ptrs)
        l = tl.load(l_ptrs)
    else:
        q = tl.load(q_ptrs, mask=mask_m[:, None])
        do = tl.load(do_ptrs, mask=mask_m[:, None])
        delta = tl.load(d_ptrs, mask=mask_m)
        l = tl.load(l_ptrs, mask=mask_m)

    # initialize dq
    dq = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)

    # loop over k, v and update accumulator
    # see note "Loop-Bound-For-N"
    if CAUSAL:
        hi = tl.minimum(N, P_SEQ + (start_m + 1) * BLOCK_M)
        if LARGER_M:
            hi = tl.maximum(0, hi)
    else:
        hi = N

    # loop over a row
    for start_n in range(0, hi, BLOCK_N):
        offs_n = start_n + offs_n_base

        # load k1, k2, v on chip
        mask_n = offs_n < N
        if DIVISIBLE_N:
            v = tl.load(v_ptrs)
            k = tl.load(k_ptrs)
        else:
            v = tl.load(v_ptrs, mask=mask_n[:, None])
            k = tl.load(k_ptrs, mask=mask_n[:, None])

        # load bias
        if HAS_BIAS:
            if DIVISIBLE_M and DIVISIBLE_N:
                b = tl.load(bias_ptrs)
            else:
                b = tl.load(bias_ptrs, mask=mask_m[:, None] & mask_n[None, :])

        # recompute p = softmax(qk * sm_scale, dim=-1)
        if not DIVISIBLE_N:
            valid_mask = mask_n # & mask_m[:, None]
        if CAUSAL:
            causal_mask = (P_SEQ + offs_m[:, None]) >= (offs_n[None, :]) # (BLOCK_M, BLOCK_N)

        s = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        s += tl.dot(q, tl.trans(k)) * sm_scale
        if HAS_BIAS:
            s += b

        # NOTE: since softmax in backward is pointwise, the normalizer has been saved in fwd)
        # So masking on s is not needed.
        # if CAUSAL:
        #     s = tl.where(causal_mask & valid_mask, s, float("-inf"))
        # else:
        #     s = tl.where(valid_mask, s, float("-inf"))
        p = tl.math.exp2((s - l[:, None])*log2e) # (BLOCK_M, BLOCK_N)

        # compute dp = dot(v, do)
        dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        dp += tl.dot(do.to(input_dtype), tl.trans(v))
        # no need to mask dp
        # if CAUSAL:
        #     dp = tl.where(causal_mask & valid_mask, dp, 0.0)
        # else:
        #     dp = tl.where(valid_mask, dp, 0.0)

        # compute ds = p * (dp - delta[:, None])
        # move scale out to dq at last
        ds = p * (dp - delta[:, None]) # (BLOCK_M, BLOCK_N)

        # mask ds to ensure no small values
        if not DIVISIBLE_N:
            ds = tl.where(valid_mask, ds, 0.0)
        if CAUSAL:
            ds = tl.where(causal_mask, ds, 0.0)

        dq += tl.dot(ds.to(input_dtype), k)

        # increment pointers
        k_ptrs += BLOCK_N * stride_kn
        v_ptrs += BLOCK_N * stride_vn
        if HAS_BIAS:
            bias_ptrs += BLOCK_N * stride_bn

    dq *= sm_scale
    if DIVISIBLE_M:
        tl.store(dq_ptrs, dq.to(input_dtype))
    else:
        tl.store(dq_ptrs, dq.to(input_dtype), mask=mask_m[:, None])