Feature Extraction
Transformers
Safetensors
Chinese
internlm2
custom_code
File size: 83,390 Bytes
a1d66ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
[2024-02-01 14:20:07,768] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-02-01 14:20:09,368] [WARNING] [runner.py:202:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only.
[2024-02-01 14:20:09,369] [INFO] [runner.py:568:main] cmd = /home/lirenhao/anaconda3/envs/llama_factory/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMSwgMiwgM119 --master_addr=127.0.0.1 --master_port=2345 --enable_each_rank_log=None /home/lirenhao/projects/LLaMA-Factory/src/train_bash.py --deepspeed ds_config.json --stage sft --model_name_or_path /home/lirenhao/pretrained_models/internlm2-chat-7b/ --do_train --dataset cpsycoun --template intern2 --finetuning_type full --lora_target wqkv --output_dir /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9 --overwrite_cache --overwrite_output_dir --per_device_train_batch_size 4 --gradient_accumulation_steps 28 --lr_scheduler_type cosine --logging_steps 10 --save_steps 21 --learning_rate 1e-6 --num_train_epochs 9.0 --plot_loss --fp16
[2024-02-01 14:20:12,819] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-02-01 14:20:14,435] [INFO] [launch.py:145:main] WORLD INFO DICT: {'localhost': [0, 1, 2, 3]}
[2024-02-01 14:20:14,436] [INFO] [launch.py:151:main] nnodes=1, num_local_procs=4, node_rank=0
[2024-02-01 14:20:14,436] [INFO] [launch.py:162:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1, 2, 3]})
[2024-02-01 14:20:14,436] [INFO] [launch.py:163:main] dist_world_size=4
[2024-02-01 14:20:14,436] [INFO] [launch.py:165:main] Setting CUDA_VISIBLE_DEVICES=0,1,2,3
[2024-02-01 14:20:19,797] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-02-01 14:20:20,069] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-02-01 14:20:20,128] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-02-01 14:20:20,157] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-02-01 14:20:22,839] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-02-01 14:20:23,347] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-02-01 14:20:23,364] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-02-01 14:20:23,375] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-02-01 14:20:23,376] [INFO] [comm.py:668:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Process rank: 2, device: cuda:2, n_gpu: 1
  distributed training: True, compute dtype: torch.float16
02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=ds_config.json,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=False,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=True,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=28,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=1e-06,
length_column_name=length,
load_best_model_at_end=False,
local_rank=2,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/runs/Feb01_14-20-22_siat-a100-4-02,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=10,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=cosine,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=9.0,
optim=adamw_torch,
optim_args=None,
output_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=4,
predict_with_generate=False,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=21,
save_strategy=steps,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Process rank: 0, device: cuda:0, n_gpu: 1
  distributed training: True, compute dtype: torch.float16
02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=ds_config.json,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=False,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=True,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=28,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=1e-06,
length_column_name=length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/runs/Feb01_14-20-23_siat-a100-4-02,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=10,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=cosine,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=9.0,
optim=adamw_torch,
optim_args=None,
output_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=4,
predict_with_generate=False,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=21,
save_strategy=steps,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
[INFO|tokenization_utils_base.py:2025] 2024-02-01 14:20:24,513 >> loading file ./tokenizer.model
[INFO|tokenization_utils_base.py:2025] 2024-02-01 14:20:24,513 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2025] 2024-02-01 14:20:24,513 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2025] 2024-02-01 14:20:24,513 >> loading file tokenizer_config.json
[INFO|tokenization_utils_base.py:2025] 2024-02-01 14:20:24,513 >> loading file tokenizer.json
[INFO|configuration_utils.py:727] 2024-02-01 14:20:24,850 >> loading configuration file /home/lirenhao/pretrained_models/internlm2-chat-7b/config.json
[INFO|configuration_utils.py:727] 2024-02-01 14:20:24,852 >> loading configuration file /home/lirenhao/pretrained_models/internlm2-chat-7b/config.json
[INFO|configuration_utils.py:792] 2024-02-01 14:20:24,854 >> Model config InternLM2Config {
  "_name_or_path": "/home/lirenhao/pretrained_models/internlm2-chat-7b/",
  "architectures": [
    "InternLM2ForCausalLM"
  ],
  "attn_implementation": "eager",
  "auto_map": {
    "AutoConfig": "configuration_internlm2.InternLM2Config",
    "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
    "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
  },
  "bias": false,
  "bos_token_id": 1,
  "eos_token_id": 2,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 32768,
  "model_type": "internlm2",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "pad_token_id": 2,
  "rms_norm_eps": 1e-05,
  "rope_scaling": {
    "factor": 2.0,
    "type": "dynamic"
  },
  "rope_theta": 1000000,
  "tie_word_embeddings": false,
  "torch_dtype": "float16",
  "transformers_version": "4.37.1",
  "use_cache": true,
  "vocab_size": 92544
}

[INFO|modeling_utils.py:3475] 2024-02-01 14:20:24,903 >> loading weights file /home/lirenhao/pretrained_models/internlm2-chat-7b/pytorch_model.bin.index.json
[INFO|modeling_utils.py:1428] 2024-02-01 14:20:24,903 >> Instantiating InternLM2ForCausalLM model under default dtype torch.float16.
[INFO|configuration_utils.py:826] 2024-02-01 14:20:24,905 >> Generate config GenerationConfig {
  "bos_token_id": 1,
  "eos_token_id": 2,
  "pad_token_id": 2
}

02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Process rank: 1, device: cuda:1, n_gpu: 1
  distributed training: True, compute dtype: torch.float16
02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=ds_config.json,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=False,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=True,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=28,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=1e-06,
length_column_name=length,
load_best_model_at_end=False,
local_rank=1,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/runs/Feb01_14-20-23_siat-a100-4-02,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=10,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=cosine,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=9.0,
optim=adamw_torch,
optim_args=None,
output_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=4,
predict_with_generate=False,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=21,
save_strategy=steps,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Process rank: 3, device: cuda:3, n_gpu: 1
  distributed training: True, compute dtype: torch.float16
02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=ds_config.json,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=False,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=True,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=28,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=1e-06,
length_column_name=length,
load_best_model_at_end=False,
local_rank=3,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/runs/Feb01_14-20-23_siat-a100-4-02,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=10,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=cosine,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=9.0,
optim=adamw_torch,
optim_args=None,
output_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=4,
predict_with_generate=False,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=21,
save_strategy=steps,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)

Loading checkpoint shards:   0%|          | 0/8 [00:00<?, ?it/s]/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
  return self.fget.__get__(instance, owner)()

Loading checkpoint shards:  12%|█▎        | 1/8 [00:00<00:03,  2.33it/s]
Loading checkpoint shards:  25%|██▌       | 2/8 [00:00<00:02,  2.20it/s]
Loading checkpoint shards:   0%|          | 0/8 [00:00<?, ?it/s]/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
  return self.fget.__get__(instance, owner)()

Loading checkpoint shards:  38%|███▊      | 3/8 [00:01<00:01,  2.74it/s]
Loading checkpoint shards:  50%|█████     | 4/8 [00:01<00:01,  3.09it/s]
Loading checkpoint shards:  12%|█▎        | 1/8 [00:00<00:02,  2.62it/s]
Loading checkpoint shards:   0%|          | 0/8 [00:00<?, ?it/s]/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
  return self.fget.__get__(instance, owner)()

Loading checkpoint shards:   0%|          | 0/8 [00:00<?, ?it/s]/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
  return self.fget.__get__(instance, owner)()

Loading checkpoint shards:  62%|██████▎   | 5/8 [00:01<00:00,  3.30it/s]
Loading checkpoint shards:  25%|██▌       | 2/8 [00:00<00:01,  3.18it/s]
Loading checkpoint shards:  12%|█▎        | 1/8 [00:00<00:01,  3.71it/s]
Loading checkpoint shards:  12%|█▎        | 1/8 [00:00<00:01,  4.09it/s]
Loading checkpoint shards:  75%|███████▌  | 6/8 [00:01<00:00,  3.45it/s]
Loading checkpoint shards:  25%|██▌       | 2/8 [00:00<00:01,  4.62it/s]
Loading checkpoint shards:  38%|███▊      | 3/8 [00:00<00:01,  3.42it/s]
Loading checkpoint shards:  25%|██▌       | 2/8 [00:00<00:01,  3.69it/s]
Loading checkpoint shards:  38%|███▊      | 3/8 [00:00<00:01,  4.86it/s]
Loading checkpoint shards:  88%|████████▊ | 7/8 [00:02<00:00,  3.56it/s]
Loading checkpoint shards:  50%|█████     | 4/8 [00:01<00:01,  3.53it/s]
Loading checkpoint shards:  38%|███▊      | 3/8 [00:00<00:01,  3.68it/s]
Loading checkpoint shards:  50%|█████     | 4/8 [00:00<00:00,  4.94it/s]
Loading checkpoint shards: 100%|██████████| 8/8 [00:02<00:00,  3.63it/s]
Loading checkpoint shards: 100%|██████████| 8/8 [00:02<00:00,  3.23it/s]
02/01/2024 14:20:35 - INFO - llmtuner.model.patcher - Gradient checkpointing enabled.
02/01/2024 14:20:35 - INFO - llmtuner.model.adapter - Fine-tuning method: Full

Loading checkpoint shards:  62%|██████▎   | 5/8 [00:01<00:00,  3.51it/s]
Loading checkpoint shards:  50%|█████     | 4/8 [00:01<00:01,  3.58it/s]
Loading checkpoint shards:  62%|██████▎   | 5/8 [00:01<00:00,  4.71it/s]
Loading checkpoint shards:  75%|███████▌  | 6/8 [00:01<00:00,  4.47it/s]
Loading checkpoint shards:  75%|███████▌  | 6/8 [00:01<00:00,  3.51it/s]
Loading checkpoint shards:  62%|██████▎   | 5/8 [00:01<00:00,  3.53it/s]
Loading checkpoint shards:  88%|████████▊ | 7/8 [00:01<00:00,  4.44it/s]
Loading checkpoint shards:  88%|████████▊ | 7/8 [00:02<00:00,  3.54it/s]
Loading checkpoint shards:  75%|███████▌  | 6/8 [00:01<00:00,  3.52it/s]
Loading checkpoint shards: 100%|██████████| 8/8 [00:01<00:00,  4.37it/s]
Loading checkpoint shards: 100%|██████████| 8/8 [00:01<00:00,  4.51it/s]
02/01/2024 14:20:36 - INFO - llmtuner.model.patcher - Gradient checkpointing enabled.
02/01/2024 14:20:36 - INFO - llmtuner.model.adapter - Fine-tuning method: Full

Loading checkpoint shards: 100%|██████████| 8/8 [00:02<00:00,  3.48it/s]
Loading checkpoint shards: 100%|██████████| 8/8 [00:02<00:00,  3.43it/s]
[INFO|modeling_utils.py:4352] 2024-02-01 14:20:36,242 >> All model checkpoint weights were used when initializing InternLM2ForCausalLM.

[INFO|modeling_utils.py:4360] 2024-02-01 14:20:36,242 >> All the weights of InternLM2ForCausalLM were initialized from the model checkpoint at /home/lirenhao/pretrained_models/internlm2-chat-7b/.
If your task is similar to the task the model of the checkpoint was trained on, you can already use InternLM2ForCausalLM for predictions without further training.
[INFO|configuration_utils.py:779] 2024-02-01 14:20:36,247 >> loading configuration file /home/lirenhao/pretrained_models/internlm2-chat-7b/generation_config.json
[INFO|configuration_utils.py:826] 2024-02-01 14:20:36,248 >> Generate config GenerationConfig {
  "bos_token_id": 1,
  "eos_token_id": 2,
  "pad_token_id": 2
}

02/01/2024 14:20:36 - INFO - llmtuner.model.patcher - Gradient checkpointing enabled.
02/01/2024 14:20:36 - INFO - llmtuner.model.adapter - Fine-tuning method: Full

Loading checkpoint shards:  88%|████████▊ | 7/8 [00:01<00:00,  3.43it/s]
Loading checkpoint shards: 100%|██████████| 8/8 [00:02<00:00,  3.42it/s]
Loading checkpoint shards: 100%|██████████| 8/8 [00:02<00:00,  3.50it/s]
02/01/2024 14:20:36 - INFO - llmtuner.model.patcher - Gradient checkpointing enabled.
02/01/2024 14:20:36 - INFO - llmtuner.model.adapter - Fine-tuning method: Full
02/01/2024 14:20:47 - INFO - llmtuner.model.loader - trainable params: 7737708544 || all params: 7737708544 || trainable%: 100.0000
02/01/2024 14:20:48 - INFO - llmtuner.data.template - Add <|im_end|> to stop words.
02/01/2024 14:20:48 - INFO - llmtuner.model.loader - trainable params: 7737708544 || all params: 7737708544 || trainable%: 100.0000
02/01/2024 14:20:48 - INFO - llmtuner.model.loader - trainable params: 7737708544 || all params: 7737708544 || trainable%: 100.0000
02/01/2024 14:20:49 - INFO - llmtuner.data.template - Add <|im_end|> to stop words.
02/01/2024 14:20:49 - WARNING - llmtuner.data.utils - Checksum failed: missing SHA-1 hash value in dataset_info.json.
02/01/2024 14:20:49 - INFO - llmtuner.data.template - Add <|im_end|> to stop words.
02/01/2024 14:20:49 - INFO - llmtuner.model.loader - trainable params: 7737708544 || all params: 7737708544 || trainable%: 100.0000
02/01/2024 14:20:49 - INFO - llmtuner.data.template - Add <|im_end|> to stop words.
Using custom data configuration default-7bf826ddf73c2f44
Loading Dataset Infos from /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/datasets/packaged_modules/json
Overwrite dataset info from restored data version if exists.
Loading Dataset info from /home/lirenhao/.cache/huggingface/datasets/json/default-7bf826ddf73c2f44/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96
Found cached dataset json (/home/lirenhao/.cache/huggingface/datasets/json/default-7bf826ddf73c2f44/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96)
Loading Dataset info from /home/lirenhao/.cache/huggingface/datasets/json/default-7bf826ddf73c2f44/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96

Converting format of dataset:   0%|          | 0/3134 [00:00<?, ? examples/s]Caching processed dataset at /home/lirenhao/.cache/huggingface/datasets/json/default-7bf826ddf73c2f44/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96/cache-39a93cb3fc4854d1.arrow

Converting format of dataset:  32%|███▏      | 1000/3134 [00:00<00:00, 7874.85 examples/s]
Converting format of dataset:  64%|██████▍   | 2000/3134 [00:00<00:00, 7860.46 examples/s]
Converting format of dataset:  96%|█████████▌| 3000/3134 [00:00<00:00, 7920.51 examples/s]
Converting format of dataset: 100%|██████████| 3134/3134 [00:00<00:00, 7665.44 examples/s]
02/01/2024 14:20:53 - WARNING - llmtuner.data.utils - Checksum failed: missing SHA-1 hash value in dataset_info.json.
02/01/2024 14:20:53 - WARNING - llmtuner.data.utils - Checksum failed: missing SHA-1 hash value in dataset_info.json.
02/01/2024 14:20:53 - WARNING - llmtuner.data.utils - Checksum failed: missing SHA-1 hash value in dataset_info.json.

Running tokenizer on dataset:   0%|          | 0/3134 [00:00<?, ? examples/s]
Converting format of dataset:   0%|          | 0/3134 [00:00<?, ? examples/s]
Converting format of dataset:   0%|          | 0/3134 [00:00<?, ? examples/s]
Converting format of dataset:   0%|          | 0/3134 [00:00<?, ? examples/s]
Converting format of dataset:  32%|███▏      | 1000/3134 [00:00<00:00, 7894.79 examples/s]
Converting format of dataset:  32%|███▏      | 1000/3134 [00:00<00:00, 7843.15 examples/s]
Converting format of dataset:  32%|███▏      | 1000/3134 [00:00<00:00, 7785.44 examples/s]
Converting format of dataset:  64%|██████▍   | 2000/3134 [00:00<00:00, 7851.76 examples/s]
Converting format of dataset:  64%|██████▍   | 2000/3134 [00:00<00:00, 7817.50 examples/s]
Converting format of dataset:  64%|██████▍   | 2000/3134 [00:00<00:00, 7774.58 examples/s]
Converting format of dataset:  96%|█████████▌| 3000/3134 [00:00<00:00, 7919.08 examples/s]
Converting format of dataset: 100%|██████████| 3134/3134 [00:00<00:00, 7689.85 examples/s]

Converting format of dataset:  96%|█████████▌| 3000/3134 [00:00<00:00, 7876.60 examples/s]
Converting format of dataset:  96%|█████████▌| 3000/3134 [00:00<00:00, 7866.53 examples/s]
Converting format of dataset: 100%|██████████| 3134/3134 [00:00<00:00, 7659.10 examples/s]

Converting format of dataset: 100%|██████████| 3134/3134 [00:00<00:00, 7636.98 examples/s]
Caching processed dataset at /home/lirenhao/.cache/huggingface/datasets/json/default-7bf826ddf73c2f44/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96/cache-7cecb244118aac13.arrow

Running tokenizer on dataset:  32%|███▏      | 1000/3134 [00:06<00:13, 161.84 examples/s]
Running tokenizer on dataset:  64%|██████▍   | 2000/3134 [00:10<00:05, 190.86 examples/s]
Running tokenizer on dataset:  96%|█████████▌| 3000/3134 [00:14<00:00, 229.56 examples/s]
Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:14<00:00, 233.78 examples/s]
Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:14<00:00, 215.75 examples/s]
input_ids:
[1, 92543, 9081, 364, 2770, 657, 589, 15358, 17993, 6843, 963, 505, 4576, 11146, 451, 60628, 60384, 60721, 62442, 60752, 4452, 285, 4576, 11146, 451, 60628, 60384, 60721, 62442, 60752, 313, 505, 395, 7659, 1813, 4287, 1762, 560, 505, 8020, 684, 36956, 15358, 31288, 451, 68589, 76659, 71581, 699, 1226, 505, 6342, 442, 517, 11100, 328, 10894, 328, 454, 51978, 756, 285, 4576, 11146, 451, 60628, 60384, 60721, 62442, 60752, 313, 777, 3696, 454, 19187, 19829, 4563, 435, 410, 4287, 12032, 684, 410, 1341, 1893, 569, 6519, 454, 262, 69093, 281, 92542, 364, 92543, 1008, 364, 85064, 60703, 60353, 68856, 68306, 61860, 62703, 69516, 68765, 68984, 60362, 60353, 60376, 68678, 60427, 69944, 60355, 92542, 364, 92543, 525, 11353, 364, 73406, 68865, 68364, 69377, 60353, 86839, 70004, 68364, 69516, 69461, 71677, 68287, 60353, 69029, 68831, 68287, 60355, 68931, 69702, 75326, 71838, 60403, 61860, 62703, 77797, 68540, 60355, 364, 92543, 1008, 364, 74820, 68399, 69088, 60677, 68540, 60353, 61032, 71155, 69059, 60355, 92542, 364, 92543, 525, 11353, 364, 91781, 60353, 73161, 80540, 60415, 82098, 60355, 72010, 71404, 60353, 60403, 76153, 68912, 60381, 74112, 61076, 60504, 364, 92543, 1008, 364, 68856, 68306, 68912, 68326, 75848, 68595, 60353, 69972, 71645, 68473, 68585, 60353, 60404, 68965, 61716, 60418, 68273, 60353, 70124, 70698, 60363, 60355, 68389, 60363, 69667, 68306, 68303, 60353, 61214, 68310, 68758, 68261, 70623, 60355, 92542, 364, 92543, 525, 11353, 364, 72010, 69030, 71711, 61076, 60504, 68522, 60353, 86004, 71645, 68629, 68804, 68592, 69095, 60504, 364, 92543, 1008, 364, 84386, 68268, 68315, 75835, 79506, 60353, 60404, 68965, 72245, 68306, 69377, 60355, 60363, 69836, 60427, 70681, 60353, 69281, 91457, 71102, 62600, 62792, 60425, 60355, 92542, 364, 92543, 525, 11353, 364, 82967, 69068, 87160, 68261, 60504, 68319, 60353, 60403, 70868, 69962, 60871, 69893, 60366, 73603, 68261, 60504, 364, 92543, 1008, 364, 68678, 70219, 92396, 84863, 73603, 68252, 71869, 76758, 60353, 68252, 78650, 68306, 71645, 60355, 60363, 70802, 68626, 71010, 73382, 69893, 60353, 60499, 69361, 61032, 68678, 72415, 60355, 92542, 364, 92543, 525, 11353, 364, 72010, 82120, 68381, 72415, 70860, 69209, 61076, 60504, 68522, 60353, 73880, 60359, 75493, 60359, 72415, 60504, 364, 92543, 1008, 364, 74212, 60353, 60363, 73408, 69836, 73880, 60381, 72415, 60355, 69097, 60353, 88720, 60382, 71343, 68254, 70861, 68892, 60459, 71356, 60586, 60355, 92542, 364, 92543, 525, 11353, 364, 68374, 69209, 73175, 68364, 77514, 61076, 60504, 68522, 60353, 68364, 70033, 60359, 69441, 60359, 68273, 60504, 364, 92543, 1008, 364, 88554, 60355, 60363, 68848, 70033, 81269, 60353, 68965, 60520, 80959, 60355, 68389, 60363, 79837, 80665, 60353, 70465, 70802, 70133, 60355, 92542, 364, 92543, 525, 11353, 364, 76273, 68374, 60353, 69060, 71958, 60353, 68364, 69516, 70848, 69715, 60354, 60355, 81425, 68831, 68637, 60353, 80698, 74131, 73382, 79309, 60355, 364, 92543, 1008, 364, 68369, 61076, 60504, 60462, 69735, 91900, 60827, 60504, 92542, 364, 92543, 525, 11353, 364, 68400, 60353, 69897, 68505, 68364, 69209, 60353, 68908, 69116, 60381, 82567, 69290, 60355, 68265, 60353, 73161, 72826, 68288, 69418, 68304, 68747, 60353, 69068, 60381, 71645, 60359, 68303, 82409, 68615, 69715, 60355, 364, 92543, 1008, 364, 82700, 69460, 70417, 60355, 86492, 60577, 69353, 68301, 60827, 60504, 92542, 364, 92543, 525, 11353, 364, 60577, 68505, 68364, 69209, 68301, 60355, 75630, 82261, 68300, 60353, 68848, 68427, 69836, 73880, 68319, 72415, 68269, 60353, 69095, 68540, 74465, 60504, 2]
inputs:
 <s> <|im_start|>  system
You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.<|im_end|>
 <|im_start|>  user
心理咨询师,我觉得我的胸闷症状越来越严重了,这让我很害怕。<|im_end|>
 <|im_start|> assistant
我能理解你的感受,首先我们要明确你的症状并不是生理问题,而是心理问题。我们可以尝试找出引发你胸闷的心理原因。
 <|im_start|>  user
可是我一直都在找原因,却找不到答案。<|im_end|>
 <|im_start|> assistant
不要着急,我们会一步一步地解决这个问题。你能告诉我,你生活中的压力和困扰吗?
 <|im_start|>  user
我觉得我的压力主要来自于家庭,我和丈夫关系不好,他总是忙于工作,很少关心我。而且我担心我的孩子,怕他们出了什么意外。<|im_end|>
 <|im_start|> assistant
你能详细说说吗?比如,你和丈夫之间的问题具体是什么?
 <|im_start|>  user
我们经常因为一些小事争吵,他总是忽略我的感受。我感到很孤独,就像被困在一个牢笼里。<|im_end|>
 <|im_start|> assistant
这种感觉让你想起了什么?或者,你觉得自己在这段婚姻中失去了什么?
 <|im_start|>  user
让我想想……我觉得我失去了一个温馨的家,一个关爱我的丈夫。我一直在努力维持这段婚姻,但现实却让我失望。<|im_end|>
 <|im_start|> assistant
你能体会到这种失望带来的情绪吗?比如,伤心、愤怒、失望?
 <|im_start|>  user
是的,我经常会感到伤心和失望。有时候,我甚至会怀疑自己的人生是不是选错了路。<|im_end|>
 <|im_start|> assistant
这些情绪会影响你的日常生活吗?比如,你的睡眠、饮食、工作?
 <|im_start|>  user
肯定的。我最近睡眠很差,总是做噩梦。而且我吃得也不好,体重一直在下降。<|im_end|>
 <|im_start|> assistant
了解到这些,我想告诉你,你的症状是可以改善的。我们可以通过心理治疗,帮助你走出这段困境。
 <|im_start|>  user
真的吗?那我要如何做呢?<|im_end|>
 <|im_start|> assistant
首先,我们要了解你的情绪,学会面对和接纳它们。然后,我们会教你怎么表达自己的需求,让你和丈夫、孩子之间的关系得到改善。
 <|im_start|>  user
听起来很有道理。那我们从哪里开始呢?<|im_end|>
 <|im_start|>  assistant
从了解你的情绪开始。试着回想一下,最近一次感到伤心或者失望的时候,是什么原因导致的?</s>
label_ids:
[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 73406, 68865, 68364, 69377, 60353, 86839, 70004, 68364, 69516, 69461, 71677, 68287, 60353, 69029, 68831, 68287, 60355, 68931, 69702, 75326, 71838, 60403, 61860, 62703, 77797, 68540, 60355, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 91781, 60353, 73161, 80540, 60415, 82098, 60355, 72010, 71404, 60353, 60403, 76153, 68912, 60381, 74112, 61076, 60504, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 72010, 69030, 71711, 61076, 60504, 68522, 60353, 86004, 71645, 68629, 68804, 68592, 69095, 60504, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 82967, 69068, 87160, 68261, 60504, 68319, 60353, 60403, 70868, 69962, 60871, 69893, 60366, 73603, 68261, 60504, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 72010, 82120, 68381, 72415, 70860, 69209, 61076, 60504, 68522, 60353, 73880, 60359, 75493, 60359, 72415, 60504, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 68374, 69209, 73175, 68364, 77514, 61076, 60504, 68522, 60353, 68364, 70033, 60359, 69441, 60359, 68273, 60504, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 76273, 68374, 60353, 69060, 71958, 60353, 68364, 69516, 70848, 69715, 60354, 60355, 81425, 68831, 68637, 60353, 80698, 74131, 73382, 79309, 60355, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 68400, 60353, 69897, 68505, 68364, 69209, 60353, 68908, 69116, 60381, 82567, 69290, 60355, 68265, 60353, 73161, 72826, 68288, 69418, 68304, 68747, 60353, 69068, 60381, 71645, 60359, 68303, 82409, 68615, 69715, 60355, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 60577, 68505, 68364, 69209, 68301, 60355, 75630, 82261, 68300, 60353, 68848, 68427, 69836, 73880, 68319, 72415, 68269, 60353, 69095, 68540, 74465, 60504, 2]
labels:
 我能理解你的感受,首先我们要明确你的症状并不是生理问题,而是心理问题。我们可以尝试找出引发你胸闷的心理原因。</s> 不要着急,我们会一步一步地解决这个问题。你能告诉我,你生活中的压力和困扰吗?</s> 你能详细说说吗?比如,你和丈夫之间的问题具体是什么?</s> 这种感觉让你想起了什么?或者,你觉得自己在这段婚姻中失去了什么?</s> 你能体会到这种失望带来的情绪吗?比如,伤心、愤怒、失望?</s> 这些情绪会影响你的日常生活吗?比如,你的睡眠、饮食、工作?</s> 了解到这些,我想告诉你,你的症状是可以改善的。我们可以通过心理治疗,帮助你走出这段困境。</s> 首先,我们要了解你的情绪,学会面对和接纳它们。然后,我们会教你怎么表达自己的需求,让你和丈夫、孩子之间的关系得到改善。</s> 从了解你的情绪开始。试着回想一下,最近一次感到伤心或者失望的时候,是什么原因导致的?</s>
[INFO|training_args.py:1828] 2024-02-01 14:21:08,098 >> PyTorch: setting up devices

Running tokenizer on dataset:   0%|          | 0/3134 [00:00<?, ? examples/s]
Running tokenizer on dataset:   0%|          | 0/3134 [00:00<?, ? examples/s]
Running tokenizer on dataset:   0%|          | 0/3134 [00:00<?, ? examples/s]/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/transformers/training_args.py:1741: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead.
  warnings.warn(
Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
[INFO|trainer.py:571] 2024-02-01 14:21:08,153 >> Using auto half precision backend
[2024-02-01 14:21:08,351] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed info: version=0.13.1, git-hash=unknown, git-branch=unknown

Running tokenizer on dataset:  32%|███▏      | 1000/3134 [00:06<00:13, 162.30 examples/s]
Running tokenizer on dataset:  32%|███▏      | 1000/3134 [00:06<00:13, 161.85 examples/s]
Running tokenizer on dataset:  32%|███▏      | 1000/3134 [00:06<00:13, 161.58 examples/s]
Running tokenizer on dataset:  64%|██████▍   | 2000/3134 [00:11<00:06, 172.50 examples/s]
Running tokenizer on dataset:  64%|██████▍   | 2000/3134 [00:12<00:07, 160.87 examples/s]
Running tokenizer on dataset:  64%|██████▍   | 2000/3134 [00:12<00:07, 160.52 examples/s]
Running tokenizer on dataset:  96%|█████████▌| 3000/3134 [00:15<00:00, 213.06 examples/s]
Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:15<00:00, 217.65 examples/s]
Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:15<00:00, 201.27 examples/s]
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/transformers/training_args.py:1741: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead.
  warnings.warn(

Running tokenizer on dataset:  96%|█████████▌| 3000/3134 [00:18<00:00, 159.71 examples/s]
Running tokenizer on dataset:  96%|█████████▌| 3000/3134 [00:18<00:00, 159.56 examples/s]
Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:19<00:00, 159.07 examples/s]
Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:19<00:00, 159.20 examples/s]
Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:19<00:00, 159.55 examples/s]

Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:19<00:00, 159.49 examples/s]
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/transformers/training_args.py:1741: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead.
  warnings.warn(
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/transformers/training_args.py:1741: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead.
  warnings.warn(
[2024-02-01 14:21:41,776] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False
[2024-02-01 14:21:41,778] [INFO] [logging.py:96:log_dist] [Rank 0] Using client Optimizer as basic optimizer
[2024-02-01 14:21:41,778] [INFO] [logging.py:96:log_dist] [Rank 0] Removing param_group that has no 'params' in the basic Optimizer
[2024-02-01 14:21:41,794] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Basic Optimizer = AdamW
[2024-02-01 14:21:41,794] [INFO] [utils.py:56:is_zero_supported_optimizer] Checking ZeRO support for optimizer=AdamW type=<class 'torch.optim.adamw.AdamW'>
[2024-02-01 14:21:41,794] [INFO] [logging.py:96:log_dist] [Rank 0] Creating torch.float16 ZeRO stage 2 optimizer
[2024-02-01 14:21:41,795] [INFO] [stage_1_and_2.py:143:__init__] Reduce bucket size 500000000
[2024-02-01 14:21:41,795] [INFO] [stage_1_and_2.py:144:__init__] Allgather bucket size 500000000
[2024-02-01 14:21:41,795] [INFO] [stage_1_and_2.py:145:__init__] CPU Offload: False
[2024-02-01 14:21:41,795] [INFO] [stage_1_and_2.py:146:__init__] Round robin gradient partitioning: False
[2024-02-01 14:22:01,253] [INFO] [utils.py:791:see_memory_usage] Before initializing optimizer states
[2024-02-01 14:22:01,254] [INFO] [utils.py:792:see_memory_usage] MA 22.12 GB         Max_MA 25.72 GB         CA 25.85 GB         Max_CA 26 GB 
[2024-02-01 14:22:01,254] [INFO] [utils.py:799:see_memory_usage] CPU Virtual Memory:  used = 119.45 GB, percent = 12.4%
[2024-02-01 14:22:01,614] [INFO] [utils.py:791:see_memory_usage] After initializing optimizer states
[2024-02-01 14:22:01,615] [INFO] [utils.py:792:see_memory_usage] MA 36.53 GB         Max_MA 50.95 GB         CA 54.68 GB         Max_CA 55 GB 
[2024-02-01 14:22:01,615] [INFO] [utils.py:799:see_memory_usage] CPU Virtual Memory:  used = 109.91 GB, percent = 11.4%
[2024-02-01 14:22:01,615] [INFO] [stage_1_and_2.py:533:__init__] optimizer state initialized
[2024-02-01 14:22:01,876] [INFO] [utils.py:791:see_memory_usage] After initializing ZeRO optimizer
[2024-02-01 14:22:01,877] [INFO] [utils.py:792:see_memory_usage] MA 36.53 GB         Max_MA 36.53 GB         CA 54.68 GB         Max_CA 55 GB 
[2024-02-01 14:22:01,878] [INFO] [utils.py:799:see_memory_usage] CPU Virtual Memory:  used = 101.72 GB, percent = 10.5%
[2024-02-01 14:22:01,881] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Final Optimizer = AdamW
[2024-02-01 14:22:01,881] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed using client LR scheduler
[2024-02-01 14:22:01,881] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed LR Scheduler = None
[2024-02-01 14:22:01,881] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[1e-06], mom=[(0.9, 0.999)]
[2024-02-01 14:22:01,883] [INFO] [config.py:984:print] DeepSpeedEngine configuration:
[2024-02-01 14:22:01,883] [INFO] [config.py:988:print]   activation_checkpointing_config  {
    "partition_activations": false, 
    "contiguous_memory_optimization": false, 
    "cpu_checkpointing": false, 
    "number_checkpoints": null, 
    "synchronize_checkpoint_boundary": false, 
    "profile": false
}
[2024-02-01 14:22:01,883] [INFO] [config.py:988:print]   aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}
[2024-02-01 14:22:01,883] [INFO] [config.py:988:print]   amp_enabled .................. False
[2024-02-01 14:22:01,883] [INFO] [config.py:988:print]   amp_params ................... False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   autotuning_config ............ {
    "enabled": false, 
    "start_step": null, 
    "end_step": null, 
    "metric_path": null, 
    "arg_mappings": null, 
    "metric": "throughput", 
    "model_info": null, 
    "results_dir": "autotuning_results", 
    "exps_dir": "autotuning_exps", 
    "overwrite": true, 
    "fast": true, 
    "start_profile_step": 3, 
    "end_profile_step": 5, 
    "tuner_type": "gridsearch", 
    "tuner_early_stopping": 5, 
    "tuner_num_trials": 50, 
    "model_info_path": null, 
    "mp_size": 1, 
    "max_train_batch_size": null, 
    "min_train_batch_size": 1, 
    "max_train_micro_batch_size_per_gpu": 1.024000e+03, 
    "min_train_micro_batch_size_per_gpu": 1, 
    "num_tuning_micro_batch_sizes": 3
}
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   bfloat16_enabled ............. False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   checkpoint_parallel_write_pipeline  False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   checkpoint_tag_validation_enabled  True
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   checkpoint_tag_validation_fail  False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   comms_config ................. <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x7f7f6152d840>
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   communication_data_type ...... None
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}}
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   curriculum_enabled_legacy .... False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   curriculum_params_legacy ..... False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}}
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   data_efficiency_enabled ...... False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   dataloader_drop_last ......... False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   disable_allgather ............ False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   dump_state ................... False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   dynamic_loss_scale_args ...... {'init_scale': 65536, 'scale_window': 1000, 'delayed_shift': 2, 'consecutive_hysteresis': False, 'min_scale': 1}
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   eigenvalue_enabled ........... False
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   eigenvalue_gas_boundary_resolution  1
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   eigenvalue_layer_name ........ bert.encoder.layer
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   eigenvalue_layer_num ......... 0
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   eigenvalue_max_iter .......... 100
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   eigenvalue_stability ......... 1e-06
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   eigenvalue_tol ............... 0.01
[2024-02-01 14:22:01,884] [INFO] [config.py:988:print]   eigenvalue_verbose ........... False
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   elasticity_enabled ........... False
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   flops_profiler_config ........ {
    "enabled": false, 
    "recompute_fwd_factor": 0.0, 
    "profile_step": 1, 
    "module_depth": -1, 
    "top_modules": 1, 
    "detailed": true, 
    "output_file": null
}
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   fp16_auto_cast ............... False
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   fp16_enabled ................. True
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   fp16_master_weights_and_gradients  False
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   global_rank .................. 0
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   grad_accum_dtype ............. None
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   gradient_accumulation_steps .. 28
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   gradient_clipping ............ 1.0
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   gradient_predivide_factor .... 1.0
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   graph_harvesting ............. False
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   hybrid_engine ................ enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   initial_dynamic_scale ........ 65536
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   load_universal_checkpoint .... False
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   loss_scale ................... 0
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   memory_breakdown ............. False
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   mics_hierarchial_params_gather  False
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   mics_shard_size .............. -1
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   monitor_config ............... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') enabled=False
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   nebula_config ................ {
    "enabled": false, 
    "persistent_storage_path": null, 
    "persistent_time_interval": 100, 
    "num_of_version_in_retention": 2, 
    "enable_nebula_load": true, 
    "load_path": null
}
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   optimizer_legacy_fusion ...... False
[2024-02-01 14:22:01,885] [INFO] [config.py:988:print]   optimizer_name ............... None
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   optimizer_params ............. None
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0, 'pipe_partitioned': True, 'grad_partitioned': True}
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   pld_enabled .................. False
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   pld_params ................... False
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   prescale_gradients ........... False
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   scheduler_name ............... None
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   scheduler_params ............. None
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   seq_parallel_communication_data_type  torch.float32
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   sparse_attention ............. None
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   sparse_gradients_enabled ..... False
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   steps_per_print .............. inf
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   train_batch_size ............. 448
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   train_micro_batch_size_per_gpu  4
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   use_data_before_expert_parallel_  False
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   use_node_local_storage ....... False
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   wall_clock_breakdown ......... False
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   weight_quantization_config ... None
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   world_size ................... 4
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   zero_allow_untested_optimizer  True
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   zero_config .................. stage=2 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500000000 use_multi_rank_bucket_allreduce=True allgather_partitions=True allgather_bucket_size=500000000 overlap_comm=False load_from_fp32_weights=True elastic_checkpoint=False offload_param=None offload_optimizer=None sub_group_size=1,000,000,000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=50,000,000 param_persistence_threshold=100,000 model_persistence_threshold=sys.maxsize max_live_parameters=1,000,000,000 max_reuse_distance=1,000,000,000 gather_16bit_weights_on_model_save=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False zero_hpz_partition_size=1 zero_quantized_weights=False zero_quantized_nontrainable_weights=False zero_quantized_gradients=False mics_shard_size=-1 mics_hierarchical_params_gather=False memory_efficient_linear=True pipeline_loading_checkpoint=False override_module_apply=True
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   zero_enabled ................. True
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   zero_force_ds_cpu_optimizer .. True
[2024-02-01 14:22:01,886] [INFO] [config.py:988:print]   zero_optimization_stage ...... 2
[2024-02-01 14:22:01,887] [INFO] [config.py:974:print_user_config]   json = {
    "train_batch_size": 448, 
    "train_micro_batch_size_per_gpu": 4, 
    "gradient_accumulation_steps": 28, 
    "gradient_clipping": 1.0, 
    "zero_allow_untested_optimizer": true, 
    "fp16": {
        "enabled": true, 
        "loss_scale": 0, 
        "initial_scale_power": 16, 
        "loss_scale_window": 1000, 
        "hysteresis": 2, 
        "min_loss_scale": 1
    }, 
    "zero_optimization": {
        "stage": 2, 
        "allgather_partitions": true, 
        "allgather_bucket_size": 5.000000e+08, 
        "reduce_scatter": true, 
        "reduce_bucket_size": 5.000000e+08, 
        "overlap_comm": false, 
        "contiguous_gradients": true
    }, 
    "steps_per_print": inf, 
    "bf16": {
        "enabled": false
    }
}
[INFO|trainer.py:1721] 2024-02-01 14:22:01,887 >> ***** Running training *****
[INFO|trainer.py:1722] 2024-02-01 14:22:01,887 >>   Num examples = 3,134
[INFO|trainer.py:1723] 2024-02-01 14:22:01,887 >>   Num Epochs = 9
[INFO|trainer.py:1724] 2024-02-01 14:22:01,887 >>   Instantaneous batch size per device = 4
[INFO|trainer.py:1727] 2024-02-01 14:22:01,887 >>   Total train batch size (w. parallel, distributed & accumulation) = 448
[INFO|trainer.py:1728] 2024-02-01 14:22:01,887 >>   Gradient Accumulation steps = 28
[INFO|trainer.py:1729] 2024-02-01 14:22:01,887 >>   Total optimization steps = 63
[INFO|trainer.py:1730] 2024-02-01 14:22:01,889 >>   Number of trainable parameters = 7,737,708,544

  0%|          | 0/63 [00:00<?, ?it/s]/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/deepspeed/runtime/zero/stage_1_and_2.py:1968: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
  overflow_gpu = get_accelerator().ByteTensor([overflow])
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/deepspeed/runtime/zero/stage_1_and_2.py:1968: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
  overflow_gpu = get_accelerator().ByteTensor([overflow])
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/deepspeed/runtime/zero/stage_1_and_2.py:1968: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
  overflow_gpu = get_accelerator().ByteTensor([overflow])
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/deepspeed/runtime/zero/stage_1_and_2.py:1968: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
  overflow_gpu = get_accelerator().ByteTensor([overflow])

  2%|▏         | 1/63 [00:44<45:32, 44.06s/it]
  3%|▎         | 2/63 [01:23<42:01, 41.33s/it]
  5%|▍         | 3/63 [02:04<41:04, 41.08s/it]
  6%|▋         | 4/63 [02:43<39:37, 40.30s/it]
  8%|▊         | 5/63 [03:22<38:23, 39.72s/it][2024-02-01 14:26:04,941] [INFO] [loss_scaler.py:190:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 65536, but hysteresis is 2. Reducing hysteresis to 1

 10%|▉         | 6/63 [04:03<38:08, 40.15s/it][2024-02-01 14:26:44,502] [INFO] [loss_scaler.py:183:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 65536, reducing to 32768

 11%|█         | 7/63 [04:42<37:17, 39.96s/it]
 13%|█▎        | 8/63 [05:21<36:23, 39.71s/it]
 14%|█▍        | 9/63 [06:01<35:39, 39.62s/it]
 16%|█▌        | 10/63 [06:41<35:16, 39.93s/it]
                                               
{'loss': 2.1176, 'learning_rate': 9.607381059352038e-07, 'epoch': 1.43}

 16%|█▌        | 10/63 [06:41<35:16, 39.93s/it]
 17%|█▋        | 11/63 [07:20<34:22, 39.65s/it]
 19%|█▉        | 12/63 [08:00<33:47, 39.76s/it]
 21%|██        | 13/63 [08:39<32:56, 39.53s/it]
 22%|██▏       | 14/63 [09:20<32:32, 39.85s/it]
 24%|██▍       | 15/63 [09:59<31:45, 39.69s/it]
 25%|██▌       | 16/63 [10:38<30:47, 39.31s/it]
 27%|██▋       | 17/63 [11:19<30:31, 39.82s/it]
 29%|██▊       | 18/63 [11:58<29:51, 39.81s/it]
 30%|███       | 19/63 [12:39<29:15, 39.89s/it]
 32%|███▏      | 20/63 [13:19<28:42, 40.06s/it]
                                               
{'loss': 1.5678, 'learning_rate': 8.117449009293668e-07, 'epoch': 2.86}

 32%|███▏      | 20/63 [13:19<28:42, 40.06s/it]
 33%|███▎      | 21/63 [13:59<27:59, 39.99s/it][INFO|trainer.py:2926] 2024-02-01 14:36:12,897 >> Saving model checkpoint to /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21
[INFO|configuration_utils.py:473] 2024-02-01 14:36:12,902 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/config.json
[INFO|configuration_utils.py:594] 2024-02-01 14:36:12,903 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/generation_config.json
[INFO|modeling_utils.py:2503] 2024-02-01 14:36:40,422 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2433] 2024-02-01 14:36:40,424 >> tokenizer config file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/tokenizer_config.json
[INFO|tokenization_utils_base.py:2442] 2024-02-01 14:36:40,424 >> Special tokens file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/special_tokens_map.json
[2024-02-01 14:36:41,670] [INFO] [logging.py:96:log_dist] [Rank 0] [Torch] Checkpoint global_step21 is about to be saved!
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
[2024-02-01 14:36:41,683] [INFO] [logging.py:96:log_dist] [Rank 0] Saving model checkpoint: /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/mp_rank_00_model_states.pt
[2024-02-01 14:36:41,684] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/mp_rank_00_model_states.pt...
[2024-02-01 14:37:17,058] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/mp_rank_00_model_states.pt.
[2024-02-01 14:37:17,061] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/zero_pp_rank_0_mp_rank_00_optim_states.pt...
[2024-02-01 14:38:15,362] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/zero_pp_rank_0_mp_rank_00_optim_states.pt.
[2024-02-01 14:38:15,363] [INFO] [engine.py:3477:_save_zero_checkpoint] zero checkpoint saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/zero_pp_rank_0_mp_rank_00_optim_states.pt
[2024-02-01 14:38:15,363] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step21 is ready now!
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(

 35%|███▍      | 22/63 [16:52<54:35, 79.88s/it]
 37%|███▋      | 23/63 [17:32<45:23, 68.08s/it]
 38%|███▊      | 24/63 [18:15<39:17, 60.44s/it]
 40%|███▉      | 25/63 [18:54<34:12, 54.02s/it]
 41%|████▏     | 26/63 [19:33<30:33, 49.54s/it]
 43%|████▎     | 27/63 [20:12<27:49, 46.38s/it]
 44%|████▍     | 28/63 [20:51<25:45, 44.17s/it]
 46%|████▌     | 29/63 [21:31<24:19, 42.92s/it]
 48%|████▊     | 30/63 [22:11<23:07, 42.06s/it]
                                               
{'loss': 1.4173, 'learning_rate': 5.868240888334652e-07, 'epoch': 4.29}

 48%|████▊     | 30/63 [22:11<23:07, 42.06s/it]
 49%|████▉     | 31/63 [22:52<22:17, 41.80s/it]
 51%|█████     | 32/63 [23:32<21:11, 41.02s/it]
 52%|█████▏    | 33/63 [24:10<20:06, 40.20s/it]
 54%|█████▍    | 34/63 [24:49<19:18, 39.96s/it]
 56%|█████▌    | 35/63 [25:30<18:43, 40.11s/it]
 57%|█████▋    | 36/63 [26:10<18:03, 40.13s/it]
 59%|█████▊    | 37/63 [26:49<17:12, 39.70s/it]
 60%|██████    | 38/63 [27:29<16:36, 39.88s/it]
 62%|██████▏   | 39/63 [28:08<15:48, 39.51s/it]
 63%|██████▎   | 40/63 [28:46<15:04, 39.34s/it]
                                               
{'loss': 1.342, 'learning_rate': 3.4075667487415785e-07, 'epoch': 5.71}

 63%|██████▎   | 40/63 [28:46<15:04, 39.34s/it]
 65%|██████▌   | 41/63 [29:27<14:36, 39.84s/it]
 67%|██████▋   | 42/63 [30:07<13:57, 39.87s/it][INFO|trainer.py:2926] 2024-02-01 14:52:21,426 >> Saving model checkpoint to /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42
[INFO|configuration_utils.py:473] 2024-02-01 14:52:21,431 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/config.json
[INFO|configuration_utils.py:594] 2024-02-01 14:52:21,432 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/generation_config.json
[INFO|modeling_utils.py:2503] 2024-02-01 14:52:48,702 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2433] 2024-02-01 14:52:48,704 >> tokenizer config file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/tokenizer_config.json
[INFO|tokenization_utils_base.py:2442] 2024-02-01 14:52:48,704 >> Special tokens file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/special_tokens_map.json
[2024-02-01 14:52:49,843] [INFO] [logging.py:96:log_dist] [Rank 0] [Torch] Checkpoint global_step42 is about to be saved!
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
[2024-02-01 14:52:49,856] [INFO] [logging.py:96:log_dist] [Rank 0] Saving model checkpoint: /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/mp_rank_00_model_states.pt
[2024-02-01 14:52:49,856] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/mp_rank_00_model_states.pt...
[2024-02-01 14:53:25,041] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/mp_rank_00_model_states.pt.
[2024-02-01 14:53:25,044] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/zero_pp_rank_0_mp_rank_00_optim_states.pt...
[2024-02-01 14:54:24,364] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/zero_pp_rank_0_mp_rank_00_optim_states.pt.
[2024-02-01 14:54:24,364] [INFO] [engine.py:3477:_save_zero_checkpoint] zero checkpoint saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/zero_pp_rank_0_mp_rank_00_optim_states.pt
[2024-02-01 14:54:24,364] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step42 is ready now!
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(

 68%|██████▊   | 43/63 [33:01<26:37, 79.86s/it]
 70%|██████▉   | 44/63 [33:41<21:31, 67.96s/it]
 71%|███████▏  | 45/63 [34:20<17:47, 59.29s/it]
 73%|███████▎  | 46/63 [35:01<15:13, 53.75s/it]
 75%|███████▍  | 47/63 [35:41<13:13, 49.58s/it]
 76%|███████▌  | 48/63 [36:21<11:40, 46.71s/it]
 78%|███████▊  | 49/63 [37:00<10:25, 44.69s/it]
 79%|███████▉  | 50/63 [37:42<09:26, 43.60s/it]
                                               
{'loss': 1.3108, 'learning_rate': 1.3347406408508694e-07, 'epoch': 7.14}

 79%|███████▉  | 50/63 [37:42<09:26, 43.60s/it]
 81%|████████  | 51/63 [38:20<08:24, 42.07s/it]
 83%|████████▎ | 52/63 [39:00<07:34, 41.29s/it]
 84%|████████▍ | 53/63 [39:41<06:52, 41.22s/it]
 86%|████████▌ | 54/63 [40:21<06:07, 40.87s/it]
 87%|████████▋ | 55/63 [41:00<05:22, 40.28s/it]
 89%|████████▉ | 56/63 [41:38<04:39, 39.88s/it]
 90%|█████████ | 57/63 [42:18<03:58, 39.78s/it]
 92%|█████████▏| 58/63 [42:59<03:20, 40.10s/it]
 94%|█████████▎| 59/63 [43:39<02:40, 40.24s/it]
 95%|█████████▌| 60/63 [44:19<02:00, 40.04s/it]
                                               
{'loss': 1.2987, 'learning_rate': 1.5461356885461075e-08, 'epoch': 8.57}

 95%|█████████▌| 60/63 [44:19<02:00, 40.04s/it]
 97%|█████████▋| 61/63 [44:58<01:19, 39.67s/it]
 98%|█████████▊| 62/63 [45:38<00:39, 39.80s/it]
100%|██████████| 63/63 [46:16<00:00, 39.26s/it][INFO|trainer.py:2926] 2024-02-01 15:08:30,323 >> Saving model checkpoint to /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63
[INFO|configuration_utils.py:473] 2024-02-01 15:08:30,328 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/config.json
[INFO|configuration_utils.py:594] 2024-02-01 15:08:30,329 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/generation_config.json
[INFO|modeling_utils.py:2503] 2024-02-01 15:08:57,391 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2433] 2024-02-01 15:08:57,393 >> tokenizer config file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/tokenizer_config.json
[INFO|tokenization_utils_base.py:2442] 2024-02-01 15:08:57,393 >> Special tokens file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/special_tokens_map.json
[2024-02-01 15:08:58,595] [INFO] [logging.py:96:log_dist] [Rank 0] [Torch] Checkpoint global_step63 is about to be saved!
/home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
[2024-02-01 15:08:58,608] [INFO] [logging.py:96:log_dist] [Rank 0] Saving model checkpoint: /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/mp_rank_00_model_states.pt
[2024-02-01 15:08:58,608] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/mp_rank_00_model_states.pt...
[2024-02-01 15:09:33,948] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/mp_rank_00_model_states.pt.
[2024-02-01 15:09:33,951] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/zero_pp_rank_0_mp_rank_00_optim_states.pt...
[2024-02-01 15:10:31,865] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/zero_pp_rank_0_mp_rank_00_optim_states.pt.
[2024-02-01 15:10:31,866] [INFO] [engine.py:3477:_save_zero_checkpoint] zero checkpoint saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/zero_pp_rank_0_mp_rank_00_optim_states.pt
[2024-02-01 15:10:31,866] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step63 is ready now!
[INFO|trainer.py:1962] 2024-02-01 15:10:32,863 >> 

Training completed. Do not forget to share your model on huggingface.co/models =)



                                               
{'train_runtime': 2910.9748, 'train_samples_per_second': 9.69, 'train_steps_per_second': 0.022, 'train_loss': 1.4981852107577853, 'epoch': 9.0}

100%|██████████| 63/63 [48:30<00:00, 39.26s/it]
100%|██████████| 63/63 [48:30<00:00, 46.21s/it]
[INFO|trainer.py:2926] 2024-02-01 15:10:44,639 >> Saving model checkpoint to /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9
[INFO|configuration_utils.py:473] 2024-02-01 15:10:44,787 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/config.json
[INFO|configuration_utils.py:594] 2024-02-01 15:10:44,788 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/generation_config.json
[2024-02-01 15:10:49,742] [INFO] [launch.py:347:main] Process 3771596 exits successfully.
[2024-02-01 15:10:49,742] [INFO] [launch.py:347:main] Process 3771597 exits successfully.
[2024-02-01 15:10:49,742] [INFO] [launch.py:347:main] Process 3771598 exits successfully.
[INFO|modeling_utils.py:2503] 2024-02-01 15:11:12,707 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2433] 2024-02-01 15:11:12,709 >> tokenizer config file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tokenizer_config.json
[INFO|tokenization_utils_base.py:2442] 2024-02-01 15:11:12,709 >> Special tokens file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/special_tokens_map.json
***** train metrics *****
  epoch                    =        9.0
  train_loss               =     1.4982
  train_runtime            = 0:48:30.97
  train_samples_per_second =       9.69
  train_steps_per_second   =      0.022
Figure saved: /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/training_loss.png
02/01/2024 15:11:14 - WARNING - llmtuner.extras.ploting - No metric eval_loss to plot.
[INFO|modelcard.py:452] 2024-02-01 15:11:14,095 >> Dropping the following result as it does not have all the necessary fields:
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
[2024-02-01 15:11:17,773] [INFO] [launch.py:347:main] Process 3771595 exits successfully.