File size: 11,651 Bytes
8520a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
import logging
import json
from typing import Optional
from pathlib import Path
from dataclasses import dataclass
import os

from mars5.model import CodecLM, ResidualTransformer
from vocos import Vocos
from encodec import EncodecModel
from mars5.diffuser import MultinomialDiffusion, DSH, perform_simple_inference
from mars5.minbpe.regex import RegexTokenizer, GPT4_SPLIT_PATTERN
from mars5.minbpe.codebook import CodebookTokenizer
from mars5.ar_generate import ar_generate
from mars5.utils import nuke_weight_norm
from mars5.trim import trim
import tempfile
import logging


@dataclass
class InferenceConfig():
    """ The defaults configuration variables for TTS inference. """

    ## >>>> AR CONFIG
    temperature: float = 0.7
    top_k: int = 200 # 0 disables it
    top_p: float = 0.2
    typical_p: float = 1.0
    freq_penalty: float = 3
    presence_penalty: float = 0.4
    rep_penalty_window: int = 80 # how far in the past to consider when penalizing repetitions. Equates to 5s

    eos_penalty_decay: float = 0.5 # how much to penalize <eos>
    eos_penalty_factor: float = 1 # overal penalty weighting
    eos_estimated_gen_length_factor: float = 1.0 # multiple of len(text_phones) to assume an approximate output length is

    ## >>>> NAR CONFIG
    # defaults, that can be overridden with user specified inputs
    timesteps: int = 200
    x_0_temp: float = 0.7
    q0_override_steps: int = 20 # number of diffusion steps where NAR L0 predictions overrides AR L0 predictions.
    nar_guidance_w: float = 3
    
    max_prompt_dur: float = 12 # maximum length prompt is allowed, in seconds.

    # Maximum AR codes to generate in 1 inference. 
    # Default of -1 leaves it same as training time max AR tokens.
    # Typical values up to ~2x training time can be tolerated, 
    # with ~1.5x trianing time tokens having still mostly ok performance.
    generate_max_len_override: int = -1

    # Whether to deep clone from the reference.
    # Pros: improves intelligibility and speaker cloning performance.
    # Cons: requires reference transcript, and inference takes a bit longer.
    deep_clone: bool = True

    use_kv_cache: bool = True
    trim_db: float = 27
    beam_width: int = 1 # only beam width of 1 is currently supported
    ref_audio_pad: float = 0


class Mars5TTS(nn.Module):

    def __init__(self, ar_ckpt, nar_ckpt, device: str = None) -> None:
        super().__init__()

        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.device = torch.device(device)
        
        self.codec = EncodecModel.encodec_model_24khz().to(device).eval()
        self.codec.set_target_bandwidth(6.0)

        # save and load text tokenize
        self.texttok = RegexTokenizer(GPT4_SPLIT_PATTERN)
        tfn = tempfile.mkstemp(suffix='texttok.model')[1]
        Path(tfn).write_text(ar_ckpt['vocab']['texttok.model'])
        self.texttok.load(tfn)
        os.remove(tfn)
        # save and load speech tokenizer
        sfn = tempfile.mkstemp(suffix='speechtok.model')[1]
        self.speechtok = CodebookTokenizer(GPT4_SPLIT_PATTERN)
        Path(sfn).write_text(ar_ckpt['vocab']['speechtok.model'])
        self.speechtok.load(sfn)
        os.remove(sfn)
        # keep track of tokenization things. 
        self.n_vocab = len(self.texttok.vocab) + len(self.speechtok.vocab)
        self.n_text_vocab = len(self.texttok.vocab) + 1 
        self.diffusion_n_classes: int = 1025 # 1 for padding idx
        # load AR model
        self.codeclm = CodecLM(n_vocab=self.n_vocab, dim=1536, dim_ff_scale=7/3)
        self.codeclm.load_state_dict(ar_ckpt['model'])
        self.codeclm = self.codeclm.to(self.device).eval()
        # load NAR model
        self.codecnar = ResidualTransformer(n_text_vocab=self.n_text_vocab, n_quant=self.diffusion_n_classes, 
                                            p_cond_drop=0, dropout=0)
        self.codecnar.load_state_dict(nar_ckpt['model'])
        self.codecnar = self.codecnar.to(self.device).eval()
        self.default_T = 200

        self.sr = 24000
        self.latent_sr = 75

        # load vocoder
        self.vocos = Vocos.from_pretrained("charactr/vocos-encodec-24khz").to(self.device).eval()
        nuke_weight_norm(self.codec)
        nuke_weight_norm(self.vocos)
        
    @torch.inference_mode
    def vocode(self, tokens: Tensor) -> Tensor:
        """ Vocodes tokens of shape (seq_len, n_q) """
        tokens = tokens.T.to(self.device)
        features = self.vocos.codes_to_features(tokens)
        # A cool hidden feature of vocos vocoding: 
        # setting the bandwidth below to 1 (corresponding to 3 kbps)
        # actually still works on 6kbps input tokens, but *smooths* the output
        # audio a bit, which can help improve quality if its a bit noisy.
        # Hence we use [1] and not [2] below. 
        bandwidth_id = torch.tensor([1], device=self.device)  # 6 kbps
        wav_diffusion = self.vocos.decode(features, bandwidth_id=bandwidth_id)
        return wav_diffusion.cpu().squeeze()[None]

    @torch.inference_mode
    def tts(self, text: str, ref_audio: Tensor, ref_transcript: Optional[str] = None, 
            cfg: Optional[InferenceConfig] = InferenceConfig()) -> Tensor:
        """ Perform TTS for `text`, given a reference audio `ref_audio` (of shape [sequence_length,], sampled at 24kHz) 
        which has an associated `ref_transcript`. Perform inference using the inference 
        config given by `cfg`, which controls the temperature, top_p, etc...
        Returns:
        - `ar_codes`: (seq_len,) long tensor of discrete coarse code outputs from the AR model.
        - `out_wav`: (T,) float output audio tensor sampled at 24kHz.
        """

        if cfg.deep_clone and ref_transcript is None:
            raise AssertionError(
                ("Inference config deep clone is set to true, but reference transcript not specified! "
                "Please specify the transcript of the prompt, or set deep_clone=False in the inference `cfg` argument."
            ))
        ref_dur = ref_audio.shape[-1]/self.sr
        if ref_dur > cfg.max_prompt_dur:
            logging.warning((f"Reference audio duration is {ref_dur:.2f} > max suggested ref audio. "
                            f"Expect quality degradations. We recommend you trim prompt to be shorter than max prompt length."))

        # get text codes. 
        text_tokens =  self.texttok.encode("<|startoftext|>"+text.strip()+"<|endoftext|>", 
                                           allowed_special='all')

        text_tokens_full = self.texttok.encode("<|startoftext|>"+ ref_transcript + ' ' + str(text).strip()+"<|endoftext|>", 
                                            allowed_special='all')
        
        if ref_audio.dim() == 1: ref_audio = ref_audio[None]
        if ref_audio.shape[0] != 1: ref_audio = ref_audio.mean(dim=0, keepdim=True)
        ref_audio = F.pad(ref_audio, (int(self.sr*cfg.ref_audio_pad), 0))
        # get reference audio codec tokens
        prompt_codec = self.codec.encode(ref_audio[None].to(self.device))[0][0] # (bs, n_q, seq_len)

        n_speech_inp = 0
        n_start_skip = 0
        q0_str = ' '.join([str(t) for t in prompt_codec[0, 0].tolist()])
        # Note, in the below, we do NOT want to encode the <eos> token as a part of it, since we will be continuing it!!!
        speech_tokens = self.speechtok.encode(q0_str.strip()) # + "<|endofspeech|>", allowed_special='all')
        spk_ref_codec = prompt_codec[0, :, :].T # (seq_len, n_q)

        raw_prompt_acoustic_len = len(prompt_codec[0,0].squeeze())
        offset_speech_codes = [p+len(self.texttok.vocab) for p in speech_tokens]
        if not cfg.deep_clone: 
            # shallow clone, so 
            # 1. clip existing speech codes to be empty (n_speech_inp = 0)
            offset_speech_codes = offset_speech_codes[:n_speech_inp]
        else: 
            # Deep clone, so
            # 1. set text to be text of prompt + target text
            text_tokens = text_tokens_full
            # 2. update n_speech_inp to be length of prompt, so we only display from ths `n_speech_inp` onwards in the final output.
            n_speech_inp = len(offset_speech_codes)
        prompt = torch.tensor(text_tokens + offset_speech_codes, dtype=torch.long, device=self.device)
        first_codec_idx = prompt.shape[-1] - n_speech_inp + 1

        # ---> perform AR code generation

        logging.debug(f"Raw acoustic prompt length: {raw_prompt_acoustic_len}")

        ar_codes = ar_generate(self.texttok, self.speechtok, self.codeclm, 
                               prompt, spk_ref_codec, first_codec_idx, 
                               max_len=cfg.generate_max_len_override if cfg.generate_max_len_override > 1 else 2000, 
                               temperature=cfg.temperature, topk=cfg.top_k, top_p=cfg.top_p, typical_p=cfg.typical_p,
                               alpha_frequency=cfg.freq_penalty, alpha_presence=cfg.presence_penalty, penalty_window=cfg.rep_penalty_window,
                               eos_penalty_decay=cfg.eos_penalty_decay, eos_penalty_factor=cfg.eos_penalty_factor,
                               beam_width=cfg.beam_width, beam_length_penalty=1,
                               n_phones_gen=round(cfg.eos_estimated_gen_length_factor*len(text)), 
                               vocode=False, use_kv_cache=cfg.use_kv_cache)

        # Parse AR output
        output_tokens = ar_codes - len(self.texttok.vocab)
        output_tokens = output_tokens.clamp(min=0).squeeze()[first_codec_idx:].cpu().tolist()
        gen_codes_decoded = self.speechtok.decode_int(output_tokens)
        gen_codes_decoded = torch.tensor([s for s in gen_codes_decoded if type(s) == int], dtype=torch.long, device=self.device)

        c_text = torch.tensor(text_tokens, dtype=torch.long, device=self.device)[None]
        c_codes = prompt_codec.permute(0, 2, 1)
        c_texts_lengths = torch.tensor([len(text_tokens)], dtype=torch.long, device=self.device)
        c_codes_lengths = torch.tensor([c_codes.shape[1],], dtype=torch.long, device=self.device)

        _x = gen_codes_decoded[None, n_start_skip:, None].repeat(1, 1, 8) # (seq_len) -> (1, seq_len, 8)
        x_padding_mask = torch.zeros((1, _x.shape[1]), dtype=torch.bool, device=_x.device)

        # ---> perform DDPM NAR inference

        T = self.default_T
        diff = MultinomialDiffusion(self.diffusion_n_classes, timesteps=T, device=self.device)

        dsh_cfg = DSH(last_greedy=True, x_0_temp=cfg.x_0_temp, 
                        guidance_w=cfg.nar_guidance_w, 
                        deep_clone=cfg.deep_clone, jump_len=1, jump_n_sample=1, 
                        q0_override_steps=cfg.q0_override_steps,
                        enable_kevin_scaled_inference=True, # see TransFusion ASR for explanation of this
                        progress=False)
        
        final_output = perform_simple_inference(self.codecnar,(
            c_text, c_codes, c_texts_lengths, c_codes_lengths, _x, x_padding_mask
        ), diff, diff.num_timesteps, torch.float16, dsh=dsh_cfg, retain_quant0=True) # (bs, seq_len, n_quant)

        skip_front = raw_prompt_acoustic_len if cfg.deep_clone else 0 
        final_output = final_output[0, skip_front:].to(self.device)  # (seq_len, n_quant)

        # vocode final output and trim silences
        final_audio = self.vocode(final_output).squeeze()
        final_audio, _ = trim(final_audio.cpu(), top_db=cfg.trim_db)

        return gen_codes_decoded, final_audio