File size: 11,651 Bytes
4c64221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
import logging
import json
from typing import Optional
from pathlib import Path
from dataclasses import dataclass
import os
from mars5.model import CodecLM, ResidualTransformer
from vocos import Vocos
from encodec import EncodecModel
from mars5.diffuser import MultinomialDiffusion, DSH, perform_simple_inference
from mars5.minbpe.regex import RegexTokenizer, GPT4_SPLIT_PATTERN
from mars5.minbpe.codebook import CodebookTokenizer
from mars5.ar_generate import ar_generate
from mars5.utils import nuke_weight_norm
from mars5.trim import trim
import tempfile
import logging
@dataclass
class InferenceConfig():
""" The defaults configuration variables for TTS inference. """
## >>>> AR CONFIG
temperature: float = 0.7
top_k: int = 200 # 0 disables it
top_p: float = 0.2
typical_p: float = 1.0
freq_penalty: float = 3
presence_penalty: float = 0.4
rep_penalty_window: int = 80 # how far in the past to consider when penalizing repetitions. Equates to 5s
eos_penalty_decay: float = 0.5 # how much to penalize <eos>
eos_penalty_factor: float = 1 # overal penalty weighting
eos_estimated_gen_length_factor: float = 1.0 # multiple of len(text_phones) to assume an approximate output length is
## >>>> NAR CONFIG
# defaults, that can be overridden with user specified inputs
timesteps: int = 200
x_0_temp: float = 0.7
q0_override_steps: int = 20 # number of diffusion steps where NAR L0 predictions overrides AR L0 predictions.
nar_guidance_w: float = 3
max_prompt_dur: float = 12 # maximum length prompt is allowed, in seconds.
# Maximum AR codes to generate in 1 inference.
# Default of -1 leaves it same as training time max AR tokens.
# Typical values up to ~2x training time can be tolerated,
# with ~1.5x trianing time tokens having still mostly ok performance.
generate_max_len_override: int = -1
# Whether to deep clone from the reference.
# Pros: improves intelligibility and speaker cloning performance.
# Cons: requires reference transcript, and inference takes a bit longer.
deep_clone: bool = True
use_kv_cache: bool = True
trim_db: float = 27
beam_width: int = 1 # only beam width of 1 is currently supported
ref_audio_pad: float = 0
class Mars5TTS(nn.Module):
def __init__(self, ar_ckpt, nar_ckpt, device: str = None) -> None:
super().__init__()
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = torch.device(device)
self.codec = EncodecModel.encodec_model_24khz().to(device).eval()
self.codec.set_target_bandwidth(6.0)
# save and load text tokenize
self.texttok = RegexTokenizer(GPT4_SPLIT_PATTERN)
tfn = tempfile.mkstemp(suffix='texttok.model')[1]
Path(tfn).write_text(ar_ckpt['vocab']['texttok.model'])
self.texttok.load(tfn)
os.remove(tfn)
# save and load speech tokenizer
sfn = tempfile.mkstemp(suffix='speechtok.model')[1]
self.speechtok = CodebookTokenizer(GPT4_SPLIT_PATTERN)
Path(sfn).write_text(ar_ckpt['vocab']['speechtok.model'])
self.speechtok.load(sfn)
os.remove(sfn)
# keep track of tokenization things.
self.n_vocab = len(self.texttok.vocab) + len(self.speechtok.vocab)
self.n_text_vocab = len(self.texttok.vocab) + 1
self.diffusion_n_classes: int = 1025 # 1 for padding idx
# load AR model
self.codeclm = CodecLM(n_vocab=self.n_vocab, dim=1536, dim_ff_scale=7/3)
self.codeclm.load_state_dict(ar_ckpt['model'])
self.codeclm = self.codeclm.to(self.device).eval()
# load NAR model
self.codecnar = ResidualTransformer(n_text_vocab=self.n_text_vocab, n_quant=self.diffusion_n_classes,
p_cond_drop=0, dropout=0)
self.codecnar.load_state_dict(nar_ckpt['model'])
self.codecnar = self.codecnar.to(self.device).eval()
self.default_T = 200
self.sr = 24000
self.latent_sr = 75
# load vocoder
self.vocos = Vocos.from_pretrained("charactr/vocos-encodec-24khz").to(self.device).eval()
nuke_weight_norm(self.codec)
nuke_weight_norm(self.vocos)
@torch.inference_mode
def vocode(self, tokens: Tensor) -> Tensor:
""" Vocodes tokens of shape (seq_len, n_q) """
tokens = tokens.T.to(self.device)
features = self.vocos.codes_to_features(tokens)
# A cool hidden feature of vocos vocoding:
# setting the bandwidth below to 1 (corresponding to 3 kbps)
# actually still works on 6kbps input tokens, but *smooths* the output
# audio a bit, which can help improve quality if its a bit noisy.
# Hence we use [1] and not [2] below.
bandwidth_id = torch.tensor([1], device=self.device) # 6 kbps
wav_diffusion = self.vocos.decode(features, bandwidth_id=bandwidth_id)
return wav_diffusion.cpu().squeeze()[None]
@torch.inference_mode
def tts(self, text: str, ref_audio: Tensor, ref_transcript: Optional[str] = None,
cfg: Optional[InferenceConfig] = InferenceConfig()) -> Tensor:
""" Perform TTS for `text`, given a reference audio `ref_audio` (of shape [sequence_length,], sampled at 24kHz)
which has an associated `ref_transcript`. Perform inference using the inference
config given by `cfg`, which controls the temperature, top_p, etc...
Returns:
- `ar_codes`: (seq_len,) long tensor of discrete coarse code outputs from the AR model.
- `out_wav`: (T,) float output audio tensor sampled at 24kHz.
"""
if cfg.deep_clone and ref_transcript is None:
raise AssertionError(
("Inference config deep clone is set to true, but reference transcript not specified! "
"Please specify the transcript of the prompt, or set deep_clone=False in the inference `cfg` argument."
))
ref_dur = ref_audio.shape[-1]/self.sr
if ref_dur > cfg.max_prompt_dur:
logging.warning((f"Reference audio duration is {ref_dur:.2f} > max suggested ref audio. "
f"Expect quality degradations. We recommend you trim prompt to be shorter than max prompt length."))
# get text codes.
text_tokens = self.texttok.encode("<|startoftext|>"+text.strip()+"<|endoftext|>",
allowed_special='all')
text_tokens_full = self.texttok.encode("<|startoftext|>"+ ref_transcript + ' ' + str(text).strip()+"<|endoftext|>",
allowed_special='all')
if ref_audio.dim() == 1: ref_audio = ref_audio[None]
if ref_audio.shape[0] != 1: ref_audio = ref_audio.mean(dim=0, keepdim=True)
ref_audio = F.pad(ref_audio, (int(self.sr*cfg.ref_audio_pad), 0))
# get reference audio codec tokens
prompt_codec = self.codec.encode(ref_audio[None].to(self.device))[0][0] # (bs, n_q, seq_len)
n_speech_inp = 0
n_start_skip = 0
q0_str = ' '.join([str(t) for t in prompt_codec[0, 0].tolist()])
# Note, in the below, we do NOT want to encode the <eos> token as a part of it, since we will be continuing it!!!
speech_tokens = self.speechtok.encode(q0_str.strip()) # + "<|endofspeech|>", allowed_special='all')
spk_ref_codec = prompt_codec[0, :, :].T # (seq_len, n_q)
raw_prompt_acoustic_len = len(prompt_codec[0,0].squeeze())
offset_speech_codes = [p+len(self.texttok.vocab) for p in speech_tokens]
if not cfg.deep_clone:
# shallow clone, so
# 1. clip existing speech codes to be empty (n_speech_inp = 0)
offset_speech_codes = offset_speech_codes[:n_speech_inp]
else:
# Deep clone, so
# 1. set text to be text of prompt + target text
text_tokens = text_tokens_full
# 2. update n_speech_inp to be length of prompt, so we only display from ths `n_speech_inp` onwards in the final output.
n_speech_inp = len(offset_speech_codes)
prompt = torch.tensor(text_tokens + offset_speech_codes, dtype=torch.long, device=self.device)
first_codec_idx = prompt.shape[-1] - n_speech_inp + 1
# ---> perform AR code generation
logging.debug(f"Raw acoustic prompt length: {raw_prompt_acoustic_len}")
ar_codes = ar_generate(self.texttok, self.speechtok, self.codeclm,
prompt, spk_ref_codec, first_codec_idx,
max_len=cfg.generate_max_len_override if cfg.generate_max_len_override > 1 else 2000,
temperature=cfg.temperature, topk=cfg.top_k, top_p=cfg.top_p, typical_p=cfg.typical_p,
alpha_frequency=cfg.freq_penalty, alpha_presence=cfg.presence_penalty, penalty_window=cfg.rep_penalty_window,
eos_penalty_decay=cfg.eos_penalty_decay, eos_penalty_factor=cfg.eos_penalty_factor,
beam_width=cfg.beam_width, beam_length_penalty=1,
n_phones_gen=round(cfg.eos_estimated_gen_length_factor*len(text)),
vocode=False, use_kv_cache=cfg.use_kv_cache)
# Parse AR output
output_tokens = ar_codes - len(self.texttok.vocab)
output_tokens = output_tokens.clamp(min=0).squeeze()[first_codec_idx:].cpu().tolist()
gen_codes_decoded = self.speechtok.decode_int(output_tokens)
gen_codes_decoded = torch.tensor([s for s in gen_codes_decoded if type(s) == int], dtype=torch.long, device=self.device)
c_text = torch.tensor(text_tokens, dtype=torch.long, device=self.device)[None]
c_codes = prompt_codec.permute(0, 2, 1)
c_texts_lengths = torch.tensor([len(text_tokens)], dtype=torch.long, device=self.device)
c_codes_lengths = torch.tensor([c_codes.shape[1],], dtype=torch.long, device=self.device)
_x = gen_codes_decoded[None, n_start_skip:, None].repeat(1, 1, 8) # (seq_len) -> (1, seq_len, 8)
x_padding_mask = torch.zeros((1, _x.shape[1]), dtype=torch.bool, device=_x.device)
# ---> perform DDPM NAR inference
T = self.default_T
diff = MultinomialDiffusion(self.diffusion_n_classes, timesteps=T, device=self.device)
dsh_cfg = DSH(last_greedy=True, x_0_temp=cfg.x_0_temp,
guidance_w=cfg.nar_guidance_w,
deep_clone=cfg.deep_clone, jump_len=1, jump_n_sample=1,
q0_override_steps=cfg.q0_override_steps,
enable_kevin_scaled_inference=True, # see TransFusion ASR for explanation of this
progress=False)
final_output = perform_simple_inference(self.codecnar,(
c_text, c_codes, c_texts_lengths, c_codes_lengths, _x, x_padding_mask
), diff, diff.num_timesteps, torch.float16, dsh=dsh_cfg, retain_quant0=True) # (bs, seq_len, n_quant)
skip_front = raw_prompt_acoustic_len if cfg.deep_clone else 0
final_output = final_output[0, skip_front:].to(self.device) # (seq_len, n_quant)
# vocode final output and trim silences
final_audio = self.vocode(final_output).squeeze()
final_audio, _ = trim(final_audio.cpu(), top_db=cfg.trim_db)
return gen_codes_decoded, final_audio
|