File size: 23,477 Bytes
8520a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
""" Custom port of librosa trim code, to remove numba dependency. 
This allows us to use librosa.trim effect without the librosa or numba dependancy.

All code below adapted from librosa open source github:
"""

import numpy as np
import torch
import torch.nn.functional as F
import warnings


def amplitude_to_db(S, ref=1.0, amin=1e-5, top_db=80.0):
    """Convert an amplitude spectrogram to dB-scaled spectrogram.

    This is equivalent to ``power_to_db(S**2)``, but is provided for convenience.

    Parameters
    ----------
    S : np.ndarray
        input amplitude

    ref : scalar or callable
        If scalar, the amplitude ``abs(S)`` is scaled relative to ``ref``:
        ``20 * log10(S / ref)``.
        Zeros in the output correspond to positions where ``S == ref``.

        If callable, the reference value is computed as ``ref(S)``.

    amin : float > 0 [scalar]
        minimum threshold for ``S`` and ``ref``

    top_db : float >= 0 [scalar]
        threshold the output at ``top_db`` below the peak:
        ``max(20 * log10(S)) - top_db``


    Returns
    -------
    S_db : np.ndarray
        ``S`` measured in dB

    See Also
    --------
    power_to_db, db_to_amplitude

    Notes
    -----
    This function caches at level 30.
    """

    # S = np.asarray(S)
    S = torch.asarray(S)
    

    magnitude = S.abs()

    if callable(ref):
        # User supplied a function to calculate reference power
        ref_value = ref(magnitude)
    else:
        ref_value = torch.abs(ref)

    power = torch.square(magnitude, out=magnitude)

    return power_to_db(power, ref=ref_value ** 2, amin=amin ** 2, top_db=top_db)


def _signal_to_frame_nonsilent(
    y, frame_length=2048, hop_length=512, top_db=60, ref=torch.max
):
    """Frame-wise non-silent indicator for audio input.

    This is a helper function for `trim` and `split`.

    Parameters
    ----------
    y : np.ndarray, shape=(n,) or (2,n)
        Audio signal, mono or stereo

    frame_length : int > 0
        The number of samples per frame

    hop_length : int > 0
        The number of samples between frames

    top_db : number > 0
        The threshold (in decibels) below reference to consider as
        silence

    ref : callable or float
        The reference power

    Returns
    -------
    non_silent : np.ndarray, shape=(m,), dtype=bool
        Indicator of non-silent frames
    """
    # Convert to mono
    if y.ndim > 1:
        y_mono = torch.mean(y, dim=0)
    else: y_mono = y

    # Compute the MSE for the signal
    mse = rms(y=y_mono, frame_length=frame_length, hop_length=hop_length) ** 2
    
    return power_to_db(mse.squeeze(), ref=ref, top_db=None) > -top_db


def trim(y, top_db=60, ref=torch.max, frame_length=2048, hop_length=512):
    """Trim leading and trailing silence from an audio signal.

    Parameters
    ----------
    y : np.ndarray, shape=(n,) or (2,n)
        Audio signal, can be mono or stereo

    top_db : number > 0
        The threshold (in decibels) below reference to consider as
        silence

    ref : number or callable
        The reference power.  By default, it uses `np.max` and compares
        to the peak power in the signal.

    frame_length : int > 0
        The number of samples per analysis frame

    hop_length : int > 0
        The number of samples between analysis frames

    Returns
    -------
    y_trimmed : np.ndarray, shape=(m,) or (2, m)
        The trimmed signal

    index : np.ndarray, shape=(2,)
        the interval of ``y`` corresponding to the non-silent region:
        ``y_trimmed = y[index[0]:index[1]]`` (for mono) or
        ``y_trimmed = y[:, index[0]:index[1]]`` (for stereo).


    Examples
    --------
    >>> # Load some audio
    >>> y, sr = librosa.load(librosa.ex('choice'))
    >>> # Trim the beginning and ending silence
    >>> yt, index = librosa.effects.trim(y)
    >>> # Print the durations
    >>> print(librosa.get_duration(y), librosa.get_duration(yt))
    25.025986394557822 25.007891156462584
    """

    non_silent = _signal_to_frame_nonsilent(
        y, frame_length=frame_length, hop_length=hop_length, ref=ref, top_db=top_db
    )

    # nonzero = np.flatnonzero(non_silent)
    nonzero = torch.nonzero(torch.ravel(non_silent)).squeeze()#[0]

    if nonzero.numel() > 0:
        # Compute the start and end positions
        # End position goes one frame past the last non-zero
        start = int(frames_to_samples(nonzero[0], hop_length))
        end = min(y.shape[-1], int(frames_to_samples(nonzero[-1] + 1, hop_length)))
    else:
        # The signal only contains zeros
        start, end = 0, 0

    # Build the mono/stereo index
    full_index = [slice(None)] * y.ndim
    full_index[-1] = slice(start, end)

    # print(non_silent)
    # print(non_silent.shape, nonzero.shape)

    return y[tuple(full_index)], torch.asarray([start, end])


def rms(
    y=None, S=None, frame_length=2048, hop_length=512, center=True, pad_mode="reflect"
):
    """Compute root-mean-square (RMS) value for each frame, either from the
    audio samples ``y`` or from a spectrogram ``S``.

    Computing the RMS value from audio samples is faster as it doesn't require
    a STFT calculation. However, using a spectrogram will give a more accurate
    representation of energy over time because its frames can be windowed,
    thus prefer using ``S`` if it's already available.


    Parameters
    ----------
    y : np.ndarray [shape=(n,)] or None
        (optional) audio time series. Required if ``S`` is not input.

    S : np.ndarray [shape=(d, t)] or None
        (optional) spectrogram magnitude. Required if ``y`` is not input.

    frame_length : int > 0 [scalar]
        length of analysis frame (in samples) for energy calculation

    hop_length : int > 0 [scalar]
        hop length for STFT. See `librosa.stft` for details.

    center : bool
        If `True` and operating on time-domain input (``y``), pad the signal
        by ``frame_length//2`` on either side.

        If operating on spectrogram input, this has no effect.

    pad_mode : str
        Padding mode for centered analysis.  See `numpy.pad` for valid
        values.

    Returns
    -------
    rms : np.ndarray [shape=(1, t)]
        RMS value for each frame


    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> librosa.feature.rms(y=y)
    array([[1.248e-01, 1.259e-01, ..., 1.845e-05, 1.796e-05]],
          dtype=float32)

    Or from spectrogram input

    >>> S, phase = librosa.magphase(librosa.stft(y))
    >>> rms = librosa.feature.rms(S=S)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> times = librosa.times_like(rms)
    >>> ax[0].semilogy(times, rms[0], label='RMS Energy')
    >>> ax[0].set(xticks=[])
    >>> ax[0].legend()
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
    ...                          y_axis='log', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='log Power spectrogram')

    Use a STFT window of constant ones and no frame centering to get consistent
    results with the RMS computed from the audio samples ``y``

    >>> S = librosa.magphase(librosa.stft(y, window=np.ones, center=False))[0]
    >>> librosa.feature.rms(S=S)
    >>> plt.show()

    """
    if y is not None:
        if y.dim() > 1:
            y = torch.mean(y, dim=0)
        
        if center:
            y = F.pad(y[None, None], (int(frame_length//2), int(frame_length//2)), mode=pad_mode)[0, 0]
            # y = np.pad(y, int(frame_length // 2), mode=pad_mode)

        x = frame(y, frame_length=frame_length, hop_length=hop_length)
        # print(y.shape, x.shape, x)
        # Calculate power
        power = torch.mean(x.abs() ** 2, dim=0, keepdim=True)
    elif S is not None:
        # Check the frame length
        if S.shape[0] != frame_length // 2 + 1:
            raise AssertionError(
                "Since S.shape[0] is {}, "
                "frame_length is expected to be {} or {}; "
                "found {}".format(
                    S.shape[0], S.shape[0] * 2 - 2, S.shape[0] * 2 - 1, frame_length
                )
            )

        # power spectrogram
        x = torch.abs(S) ** 2

        # Adjust the DC and sr/2 component
        x[0] *= 0.5
        if frame_length % 2 == 0:
            x[-1] *= 0.5

        # Calculate power
        power = 2 * torch.sum(x, dim=0, keepdim=True) / frame_length ** 2
    else:
        raise AssertionError("Either `y` or `S` must be input.")

    return torch.sqrt(power)


def frame(x, frame_length, hop_length, axis=-1):
    """Slice a data array into (overlapping) frames.

    This implementation uses low-level stride manipulation to avoid
    making a copy of the data.  The resulting frame representation
    is a new view of the same input data.

    However, if the input data is not contiguous in memory, a warning
    will be issued and the output will be a full copy, rather than
    a view of the input data.

    For example, a one-dimensional input ``x = [0, 1, 2, 3, 4, 5, 6]``
    can be framed with frame length 3 and hop length 2 in two ways.
    The first (``axis=-1``), results in the array ``x_frames``::

        [[0, 2, 4],
         [1, 3, 5],
         [2, 4, 6]]

    where each column ``x_frames[:, i]`` contains a contiguous slice of
    the input ``x[i * hop_length : i * hop_length + frame_length]``.

    The second way (``axis=0``) results in the array ``x_frames``::

        [[0, 1, 2],
         [2, 3, 4],
         [4, 5, 6]]

    where each row ``x_frames[i]`` contains a contiguous slice of the input.

    This generalizes to higher dimensional inputs, as shown in the examples below.
    In general, the framing operation increments by 1 the number of dimensions,
    adding a new "frame axis" either to the end of the array (``axis=-1``)
    or the beginning of the array (``axis=0``).


    Parameters
    ----------
    x : np.ndarray
        Array to frame

    frame_length : int > 0 [scalar]
        Length of the frame

    hop_length : int > 0 [scalar]
        Number of steps to advance between frames

    axis : 0 or -1
        The axis along which to frame.

        If ``axis=-1`` (the default), then ``x`` is framed along its last dimension.
        ``x`` must be "F-contiguous" in this case.

        If ``axis=0``, then ``x`` is framed along its first dimension.
        ``x`` must be "C-contiguous" in this case.

    Returns
    -------
    x_frames : np.ndarray [shape=(..., frame_length, N_FRAMES) or (N_FRAMES, frame_length, ...)]
        A framed view of ``x``, for example with ``axis=-1`` (framing on the last dimension)::

            x_frames[..., j] == x[..., j * hop_length : j * hop_length + frame_length]

        If ``axis=0`` (framing on the first dimension), then::

            x_frames[j] = x[j * hop_length : j * hop_length + frame_length]

    Raises
    ------
    ParameterError
        If ``x`` is not an `np.ndarray`.

        If ``x.shape[axis] < frame_length``, there is not enough data to fill one frame.

        If ``hop_length < 1``, frames cannot advance.

        If ``axis`` is not 0 or -1.  Framing is only supported along the first or last axis.


    See Also
    --------
    numpy.asfortranarray : Convert data to F-contiguous representation
    numpy.ascontiguousarray : Convert data to C-contiguous representation
    numpy.ndarray.flags : information about the memory layout of a numpy `ndarray`.

    Examples
    --------
    Extract 2048-sample frames from monophonic signal with a hop of 64 samples per frame

    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64)
    >>> frames
    array([[-1.407e-03, -2.604e-02, ..., -1.795e-05, -8.108e-06],
           [-4.461e-04, -3.721e-02, ..., -1.573e-05, -1.652e-05],
           ...,
           [ 7.960e-02, -2.335e-01, ..., -6.815e-06,  1.266e-05],
           [ 9.568e-02, -1.252e-01, ...,  7.397e-06, -1.921e-05]],
          dtype=float32)
    >>> y.shape
    (117601,)

    >>> frames.shape
    (2048, 1806)

    Or frame along the first axis instead of the last:

    >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64, axis=0)
    >>> frames.shape
    (1806, 2048)

    Frame a stereo signal:

    >>> y, sr = librosa.load(librosa.ex('trumpet', hq=True), mono=False)
    >>> y.shape
    (2, 117601)
    >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64)
    (2, 2048, 1806)

    Carve an STFT into fixed-length patches of 32 frames with 50% overlap

    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> S = np.abs(librosa.stft(y))
    >>> S.shape
    (1025, 230)
    >>> S_patch = librosa.util.frame(S, frame_length=32, hop_length=16)
    >>> S_patch.shape
    (1025, 32, 13)
    >>> # The first patch contains the first 32 frames of S
    >>> np.allclose(S_patch[:, :, 0], S[:, :32])
    True
    >>> # The second patch contains frames 16 to 16+32=48, and so on
    >>> np.allclose(S_patch[:, :, 1], S[:, 16:48])
    True
    """

    # if not isinstance(x, np.ndarray):
    #     raise AssertionError(
    #         "Input must be of type numpy.ndarray, " "given type(x)={}".format(type(x))
    #     )
    x: torch.Tensor = x

    if x.shape[axis] < frame_length:
        raise AssertionError(
            "Input is too short (n={:d})"
            " for frame_length={:d}".format(x.shape[axis], frame_length)
        )

    if hop_length < 1:
        raise AssertionError("Invalid hop_length: {:d}".format(hop_length))

    if axis == -1 and not x.is_contiguous():
        warnings.warn(
            "librosa.util.frame called with axis={} "
            "on a non-contiguous input. This will result in a copy.".format(axis)
        )
        x = x.contiguous()
    elif axis == 0 and not x.is_contiguous():
        warnings.warn(
            "librosa.util.frame called with axis={} "
            "on a non-contiguous input. This will result in a copy.".format(axis)
        )
        x = x.contiguous()

    n_frames = 1 + (x.shape[axis] - frame_length) // hop_length
    strides = torch.asarray(x.numpy().strides)
    # print(strides, x)
    new_stride = torch.prod(strides[strides > 0] // x.itemsize) * x.itemsize

    if axis == -1:
        shape = list(x.shape)[:-1] + [frame_length, n_frames]
        strides = list(strides) + [hop_length * new_stride]

    elif axis == 0:
        shape = [n_frames, frame_length] + list(x.shape)[1:]
        strides = [hop_length * new_stride] + list(strides)

    else:
        raise AssertionError("Frame axis={} must be either 0 or -1".format(axis))

    return torch.from_numpy(as_strided(x, shape=shape, strides=strides))
    # return x.as_strided(size=shape, stride=strides)



class DummyArray:
    """Dummy object that just exists to hang __array_interface__ dictionaries
    and possibly keep alive a reference to a base array.
    """

    def __init__(self, interface, base=None):
        self.__array_interface__ = interface
        self.base = base



def as_strided(x, shape=None, strides=None, subok=False, writeable=True):
    """
    Create a view into the array with the given shape and strides.

    .. warning:: This function has to be used with extreme care, see notes.

    Parameters
    ----------
    x : ndarray
        Array to create a new.
    shape : sequence of int, optional
        The shape of the new array. Defaults to ``x.shape``.
    strides : sequence of int, optional
        The strides of the new array. Defaults to ``x.strides``.
    subok : bool, optional
        .. versionadded:: 1.10

        If True, subclasses are preserved.
    writeable : bool, optional
        .. versionadded:: 1.12

        If set to False, the returned array will always be readonly.
        Otherwise it will be writable if the original array was. It
        is advisable to set this to False if possible (see Notes).

    Returns
    -------
    view : ndarray

    See also
    --------
    broadcast_to : broadcast an array to a given shape.
    reshape : reshape an array.
    lib.stride_tricks.sliding_window_view :
        userfriendly and safe function for the creation of sliding window views.

    Notes
    -----
    ``as_strided`` creates a view into the array given the exact strides
    and shape. This means it manipulates the internal data structure of
    ndarray and, if done incorrectly, the array elements can point to
    invalid memory and can corrupt results or crash your program.
    It is advisable to always use the original ``x.strides`` when
    calculating new strides to avoid reliance on a contiguous memory
    layout.

    Furthermore, arrays created with this function often contain self
    overlapping memory, so that two elements are identical.
    Vectorized write operations on such arrays will typically be
    unpredictable. They may even give different results for small, large,
    or transposed arrays.
    Since writing to these arrays has to be tested and done with great
    care, you may want to use ``writeable=False`` to avoid accidental write
    operations.

    For these reasons it is advisable to avoid ``as_strided`` when
    possible.
    """
    # first convert input to array, possibly keeping subclass
    x = np.array(x, copy=False, subok=subok)
    interface = dict(x.__array_interface__)
    if shape is not None:
        interface['shape'] = tuple(shape)
    if strides is not None:
        interface['strides'] = tuple(strides)

    array = np.asarray(DummyArray(interface, base=x))
    # The route via `__interface__` does not preserve structured
    # dtypes. Since dtype should remain unchanged, we set it explicitly.
    array.dtype = x.dtype

    view = _maybe_view_as_subclass(x, array)

    if view.flags.writeable and not writeable:
        view.flags.writeable = False

    return view


def _maybe_view_as_subclass(original_array, new_array):
    if type(original_array) is not type(new_array):
        # if input was an ndarray subclass and subclasses were OK,
        # then view the result as that subclass.
        new_array = new_array.view(type=type(original_array))
        # Since we have done something akin to a view from original_array, we
        # should let the subclass finalize (if it has it implemented, i.e., is
        # not None).
        if new_array.__array_finalize__:
            new_array.__array_finalize__(original_array)
    return new_array


def power_to_db(S, ref=1.0, amin=1e-10, top_db=80.0):
    """Convert a power spectrogram (amplitude squared) to decibel (dB) units

    This computes the scaling ``10 * log10(S / ref)`` in a numerically
    stable way.

    Parameters
    ----------
    S : np.ndarray
        input power

    ref : scalar or callable
        If scalar, the amplitude ``abs(S)`` is scaled relative to ``ref``::

            10 * log10(S / ref)

        Zeros in the output correspond to positions where ``S == ref``.

        If callable, the reference value is computed as ``ref(S)``.

    amin : float > 0 [scalar]
        minimum threshold for ``abs(S)`` and ``ref``

    top_db : float >= 0 [scalar]
        threshold the output at ``top_db`` below the peak:
        ``max(10 * log10(S)) - top_db``

    Returns
    -------
    S_db : np.ndarray
        ``S_db ~= 10 * log10(S) - 10 * log10(ref)``

    See Also
    --------
    perceptual_weighting
    db_to_power
    amplitude_to_db
    db_to_amplitude

    Notes
    -----
    This function caches at level 30.


    Examples
    --------
    Get a power spectrogram from a waveform ``y``

    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> S = np.abs(librosa.stft(y))
    >>> librosa.power_to_db(S**2)
    array([[-41.809, -41.809, ..., -41.809, -41.809],
           [-41.809, -41.809, ..., -41.809, -41.809],
           ...,
           [-41.809, -41.809, ..., -41.809, -41.809],
           [-41.809, -41.809, ..., -41.809, -41.809]], dtype=float32)

    Compute dB relative to peak power

    >>> librosa.power_to_db(S**2, ref=np.max)
    array([[-80., -80., ..., -80., -80.],
           [-80., -80., ..., -80., -80.],
           ...,
           [-80., -80., ..., -80., -80.],
           [-80., -80., ..., -80., -80.]], dtype=float32)

    Or compare to median power

    >>> librosa.power_to_db(S**2, ref=np.median)
    array([[16.578, 16.578, ..., 16.578, 16.578],
           [16.578, 16.578, ..., 16.578, 16.578],
           ...,
           [16.578, 16.578, ..., 16.578, 16.578],
           [16.578, 16.578, ..., 16.578, 16.578]], dtype=float32)


    And plot the results

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
    >>> imgpow = librosa.display.specshow(S**2, sr=sr, y_axis='log', x_axis='time',
    ...                                   ax=ax[0])
    >>> ax[0].set(title='Power spectrogram')
    >>> ax[0].label_outer()
    >>> imgdb = librosa.display.specshow(librosa.power_to_db(S**2, ref=np.max),
    ...                                  sr=sr, y_axis='log', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='Log-Power spectrogram')
    >>> fig.colorbar(imgpow, ax=ax[0])
    >>> fig.colorbar(imgdb, ax=ax[1], format="%+2.0f dB")
    """

    S = torch.asarray(S)

    if amin <= 0:
        raise AssertionError("amin must be strictly positive")

    # if np.issubdtype(S.dtype, np.complexfloating):
    #     warnings.warn(
    #         "power_to_db was called on complex input so phase "
    #         "information will be discarded. To suppress this warning, "
    #         "call power_to_db(np.abs(D)**2) instead."
    #     )
    #     magnitude = np.abs(S)
    # else:
    magnitude = S

    if callable(ref):
        # User supplied a function to calculate reference power
        ref_value = ref(magnitude)
    else:
        ref_value = torch.abs(ref)

    log_spec = 10.0 * torch.log10(torch.maximum(torch.tensor(amin), magnitude))
    log_spec -= 10.0 * torch.log10(torch.maximum(torch.tensor(amin), ref_value))

    if top_db is not None:
        if top_db < 0:
            raise AssertionError("top_db must be non-negative")
        log_spec = torch.maximum(log_spec, log_spec.max() - top_db)

    return log_spec


def frames_to_samples(frames, hop_length=512, n_fft=None):
    """Converts frame indices to audio sample indices.

    Parameters
    ----------
    frames     : number or np.ndarray [shape=(n,)]
        frame index or vector of frame indices

    hop_length : int > 0 [scalar]
        number of samples between successive frames

    n_fft : None or int > 0 [scalar]
        Optional: length of the FFT window.
        If given, time conversion will include an offset of ``n_fft // 2``
        to counteract windowing effects when using a non-centered STFT.

    Returns
    -------
    times : number or np.ndarray
        time (in samples) of each given frame number::

            times[i] = frames[i] * hop_length

    See Also
    --------
    frames_to_time : convert frame indices to time values
    samples_to_frames : convert sample indices to frame indices

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('choice'))
    >>> tempo, beats = librosa.beat.beat_track(y, sr=sr)
    >>> beat_samples = librosa.frames_to_samples(beats)
    """

    offset = 0
    if n_fft is not None:
        offset = int(n_fft // 2)

    return (torch.asarray(frames) * hop_length + offset).to(torch.int)