Edit model card

spellcorrector_2410_v14_canine-s

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0043
  • Precision: 0.9996
  • Recall: 0.9994
  • F1: 0.9995
  • Accuracy: 0.9989

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.19 1.0 1951 0.1535 0.9437 0.9787 0.9609 0.9670
0.1486 2.0 3902 0.1187 0.9591 0.9774 0.9682 0.9716
0.126 3.0 5853 0.1029 0.9671 0.9792 0.9731 0.9739
0.1082 4.0 7804 0.0888 0.9740 0.9785 0.9763 0.9769
0.0992 5.0 9755 0.0719 0.9762 0.9852 0.9807 0.9813
0.0871 6.0 11706 0.0624 0.9805 0.9861 0.9833 0.9832
0.0782 7.0 13657 0.0527 0.9835 0.9885 0.9860 0.9858
0.0693 8.0 15608 0.0446 0.9866 0.9898 0.9882 0.9876
0.0604 9.0 17559 0.0375 0.9888 0.9906 0.9897 0.9893
0.0543 10.0 19510 0.0318 0.9915 0.9926 0.9921 0.9914
0.046 11.0 21461 0.0272 0.9932 0.9940 0.9936 0.9925
0.0425 12.0 23412 0.0217 0.9942 0.9950 0.9946 0.9939
0.0378 13.0 25363 0.0188 0.9953 0.9963 0.9958 0.9946
0.0333 14.0 27314 0.0160 0.9963 0.9962 0.9962 0.9954
0.0286 15.0 29265 0.0140 0.9972 0.9970 0.9971 0.9960
0.0261 16.0 31216 0.0121 0.9977 0.9978 0.9978 0.9966
0.0235 17.0 33167 0.0104 0.9984 0.9979 0.9982 0.9972
0.021 18.0 35118 0.0090 0.9987 0.9986 0.9986 0.9976
0.0196 19.0 37069 0.0073 0.9990 0.9988 0.9989 0.9980
0.0166 20.0 39020 0.0064 0.9992 0.9991 0.9991 0.9983
0.0158 21.0 40971 0.0059 0.9994 0.9991 0.9992 0.9984
0.0136 22.0 42922 0.0053 0.9995 0.9994 0.9994 0.9986
0.0134 23.0 44873 0.0047 0.9996 0.9993 0.9994 0.9988
0.0125 24.0 46824 0.0045 0.9996 0.9993 0.9995 0.9989
0.0116 25.0 48775 0.0043 0.9996 0.9994 0.9995 0.9989

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.