Edit model card

canine_sent_0504

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Precision: 0.8919
  • Recall: 0.9429
  • F1: 0.9167
  • Accuracy: 1.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 64 0.0037 0.1082 0.8286 0.1914 0.9988
No log 2.0 128 0.0019 0.2013 0.8857 0.3280 0.9993
No log 3.0 192 0.0015 0.3077 0.9143 0.4604 0.9994
No log 4.0 256 0.0012 0.3855 0.9143 0.5424 0.9995
No log 5.0 320 0.0011 0.2645 0.9143 0.4103 0.9995
No log 6.0 384 0.0010 0.2406 0.9143 0.3810 0.9996
No log 7.0 448 0.0008 0.2336 0.9143 0.3721 0.9996
0.008 8.0 512 0.0007 0.2623 0.9143 0.4076 0.9997
0.008 9.0 576 0.0006 0.3265 0.9143 0.4812 0.9998
0.008 10.0 640 0.0005 0.3137 0.9143 0.4672 0.9998
0.008 11.0 704 0.0004 0.4521 0.9429 0.6111 0.9999
0.008 12.0 768 0.0003 0.5 0.9429 0.6535 0.9999
0.008 13.0 832 0.0003 0.66 0.9429 0.7765 0.9999
0.008 14.0 896 0.0002 0.5238 0.9429 0.6735 0.9999
0.008 15.0 960 0.0002 0.7333 0.9429 0.8250 0.9999
0.0008 16.0 1024 0.0001 0.8684 0.9429 0.9041 1.0000
0.0008 17.0 1088 0.0001 0.8462 0.9429 0.8919 1.0000
0.0008 18.0 1152 0.0001 0.8684 0.9429 0.9041 1.0000
0.0008 19.0 1216 0.0001 0.8919 0.9429 0.9167 1.0000
0.0008 20.0 1280 0.0001 0.8919 0.9429 0.9167 1.0000

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.