File size: 3,675 Bytes
a64cc3d e3f70f4 a64cc3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
datasets:
- vicgalle/worldsim-claude-opus
- macadeliccc/opus_samantha
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-9.5K-ShareGPT
- lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-3.3K
- QuietImpostor/Sao10K-Claude-3-Opus-Instruct-15K-ShareGPT
- ChaoticNeutrals/Luminous_Opus
- kalomaze/Opus_Instruct_3k
- kalomaze/Opus_Instruct_25k
language:
- en
base_model:
- meta-llama/Llama-3.1-8B
pipeline_tag: text-generation
license: llama3.1
---
![L3.1-8B-Fabula](https://files.catbox.moe/blwlvb.jpeg)
# L3.1-8B-Fabula
L3.1-8B-Fabula is a fine-tuned version of Facebook's LLaMA 3.1 8B model, specifically optimized for roleplay and general knowledge tasks.
## Model Details
- **Base Model**: [Llama-3.1-8B](https://hf.co/meta-llama/Llama-3.1-8B)
- **Chat Template**: ChatML
- **Max Input Tokens**: 32,768
- **Datasets Used In Fine-tuning:**
* [vicgalle/worldsim-claude-opus](https://hf.co/datasets/vicgalle/worldsim-claude-opus)
* [macadeliccc/opus_samantha](https://hf.co/datasets/macadeliccc/opus_samantha)
* [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://hf.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal)
* [lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-9.5K-ShareGPT](https://hf.co/datasets/lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-9.5K-ShareGPT)
* [lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-3.3K](https://hf.co/datasets/lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-3.3K)
* [QuietImpostor/Sao10K-Claude-3-Opus-Instruct-15K-ShareGPT](https://hf.co/datasets/QuietImpostor/Sao10K-Claude-3-Opus-Instruct-15K-ShareGPT)
* [ChaoticNeutrals/Luminous_Opus](https://hf.co/datasets/ChaoticNeutrals/Luminous_Opus)
* [kalomaze/Opus_Instruct_3k](https://hf.co/datasets/kalomaze/Opus_Instruct_3k)
* [kalomaze/Opus_Instruct_25k](https://hf.co/datasets/kalomaze/Opus_Instruct_25k)
## Chat Template
- In the finetuning ChatML were used.
```js
function chatml2(messages) {
/**
* @param {Array<{role: string, name: string, content: string}>} messages
* @returns {{prompt: string, stop: string}}
* @description Formats messages into ChatML template format
*/
const isLastMessageAssistant = messages[messages.length - 1]?.role === "assistant";
return {
prompt: messages.map((message, index) => {
const nameStr = message.name ? ` [${message.name}]` : "";
const isLast = index === messages.length - 1;
const needsEndTag = !isLastMessageAssistant || !isLast;
return `<|im_start|>${message.role.toLowerCase()}${nameStr}\n${message.content}${needsEndTag ? "<|im_end|>" : ""}`;
}).join("\n") + (isLastMessageAssistant ? "" : "\n<|im_start|>assistant\n"),
stop: "<|im_end|>"
};
}
```
I would highly recommend you add a set of rules in assistant role at the end of the chat history like this example below:
```md
<rules for="{{char}}'s responses">
1. I will write a response as {{char}} in a short manner and will keep it detailed (I will try to keep it under 300 characters).
2. Response formatting:
"This is for talking"
*This is for doing an action/ or self-reflection if I decide to write {{char}}'s response in first-person*
ex: "Hello, there!" *{name} waves,* "How are you doing today?"
3. When I feel like it is needed for {{user}} to talk, I will not act as {{user}} or for them, I will simply stop generating more text via executing my EOS (end-of-string) token "<|im_end|>", to let the user write their response as {{user}}
4. I will use my past messages as an example of how {{char}} speaks
</rules>
**{{char}}'s response:**
``` |