File size: 20,787 Bytes
a420fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df388cc
a420fe7
 
 
 
 
 
 
 
df388cc
 
 
 
 
 
a420fe7
 
 
 
 
 
df388cc
 
a420fe7
 
 
 
 
 
df388cc
 
 
a420fe7
 
 
 
 
 
df388cc
 
a420fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df388cc
 
 
a420fe7
 
 
df388cc
a420fe7
 
 
df388cc
a420fe7
 
 
 
 
 
 
 
 
df388cc
 
a420fe7
 
df388cc
a420fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df388cc
 
a420fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df388cc
 
 
a420fe7
 
df388cc
 
 
 
 
 
 
 
 
a420fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
from dataclasses import dataclass, field
from einops import rearrange, repeat
import math
import torch
from torch.amp.autocast_mode import autocast
import torch.nn as nn
from transformers.activations import ACT2FN
from typing import cast

# if flash_attn exists
try:
    from flash_attn.bert_padding import pad_input, unpad_input
    from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
    from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
    from flash_attn.ops.fused_dense import FusedDense
except ImportError:
    print("flash_attn not found, using default implementations")
    pad_input = unpad_input = FlashRotaryEmbedding = FlashCrossAttentio = FlashSelfAttention = FusedDense = None


class RotaryEmbedding(nn.Module):
    """Rotary positional embedding (RoPE) from Phi2.
    See https://www.youtube.com/watch?v=C6rV8BsrrCc
    """

    def __init__(
        self,
        d_rotary: int,
        rotary_base: float = 10000.0,
        initial_cos_sin_cache_len: int = 2048,
        device: torch.device | None = None,
    ) -> None:
        super().__init__()
        self.d_rotary = d_rotary
        self.rotary_base = rotary_base
        self.device = device
        self.dtype = torch.float32
        self._update_cos_sin_cache(seqlen=initial_cos_sin_cache_len)

    def _update_cos_sin_cache(
        self,
        seqlen: int,
        device: str | None = None,
        dtype: torch.dtype | None = None,
    ) -> None:
        # only call this function when seqlen is larger than _max_seqlen
        self._max_seqlen = seqlen

        # m * theta_i = m * base^(-2i/d) = m * (1 / base^(2i/d)), where i in [1, d/2]
        m = torch.arange(
            seqlen,
            device=device,
            dtype=torch.float32,
        )
        theta_i = 1.0 / (
            self.rotary_base ** (
                torch.arange(
                    start=0,
                    end=self.d_rotary,
                    step=2,
                    device=device,
                    dtype=torch.float32,
                ) / self.d_rotary
            )
        )
        # torch.outer, since torch.einsum converts from fp32 to fp16 if used with torch.amp
        # TODO: does this matter if I'm disabling torch.autocast?
        m_theta_i = torch.outer(m, theta_i)
        self._cos_cached = torch.cos(m_theta_i).to(dtype)
        self._sin_cached = torch.sin(m_theta_i).to(dtype)

        # TODO: scale_base caching is labelled as not yet done in Phi2
        """
        if scale_base is not None:
            scale = (
                torch.arange(
                    start=0,
                    end=self.d_rotary,
                    step=2,
                    device=self.device,
                    dtype=torch.float32,
                ) + 0.4 * self.d_rotary
            ) / (1.4 * self.d_rotary)
            power = (
                torch.arange(seqlen, dtype=scale.dtype, device=scale.device) - seqlen // 2
            ) / scale_base
            scale = scale.to(device=power.device) ** rearrange(power, "s -> s 1")
            self._cos_cached = (torch.cos(m_theta_i) * scale).to(dtype)
            self._sin_cached = (torch.sin(m_theta_i) * scale).to(dtype)
        """

    def _apply_rotary_emb_qkv(
        self,
        x: torch.FloatTensor,  # dim: (batch_size, seqlen, Optional[n_qkv], n_heads, d_head)
        cos: torch.FloatTensor,  # dim: (_max_seqlen, d_rotary)
        sin: torch.FloatTensor,  # dim: (_max_seqlen, d_rotary)
    ) -> torch.FloatTensor:
        seqlen = x.shape[1]
        x_to_rotate = x[..., :self.d_rotary]
        x_to_keep_unrotated = x[..., self.d_rotary:]
        x1, x2 = x_to_rotate.chunk(2, dim=-1)  # dim: (batch_size, seqlen, Optional[n_qkv], n_heads, d_rotary/2)
        broadcast_rearrange = "s d -> s 1 d" if x1.ndim == 4 else "s d -> s 1 1 d"
        c, s = rearrange(cos[:seqlen], broadcast_rearrange), rearrange(sin[:seqlen], broadcast_rearrange)
        x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]  # make sure rotary embedding is in float32
        x_rotated = cast(
            torch.FloatTensor,
            torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], dim=-1).to(x.dtype)
        )
        return torch.cat([x_rotated, x_to_keep_unrotated], axis=-1)

    def forward(
        self,
        x: torch.FloatTensor,  # dim: (batch_size, seqlen, Optional[n_qkv], n_heads, d_head)
        seqlen_offset: int = 0,  # each sequence is shifted by this amount - used in inference with KV cache
    ) -> torch.FloatTensor:
        if (
            not self._max_seqlen
            or self._max_seqlen < x.shape[1] + seqlen_offset
            or self._cos_cached.device != x.device
            or self._cos_cached.dtype != x.dtype
            or (self.training and self._cos_cached.is_inference())
        ):
            self._update_cos_sin_cache(seqlen=x.shape[1] + seqlen_offset, device=x.device, dtype=x.dtype)
        return self._apply_rotary_emb_qkv(
            x,
            cast(torch.FloatTensor, self._cos_cached[seqlen_offset:]),
            cast(torch.FloatTensor, self._sin_cached[seqlen_offset:]),
        )


class SelfAttention(nn.Module):
    """Self-attention layer, taken from Phi2 model."""

    def __init__(
        self,
        qk_scale: float | None = None,  # will use 1/sqrt(d) if set to None
        attention_dropout: float = 0.0,
    ) -> None:
        super().__init__()
        self.qk_scale = qk_scale
        self.dropout = nn.Dropout(attention_dropout)

    # autocast is manually disabled to avoid `torch.einsum` using float16, which might lead to overflow
    @autocast("cpu", enabled=False)
    @autocast("cuda", enabled=False)
    def forward(
        self,
        qkv: torch.FloatTensor,  # dim: (batch_size, seqlen, 3, n_heads, d_head)
        causal: bool = True,
        key_padding_mask: torch.BoolTensor | None = None,
    ) -> torch.FloatTensor:
        batch_size, seqlen = qkv.shape[0], qkv.shape[1]
        q, k, v = qkv.unbind(dim=2)
        q = q.to(torch.float32)
        k = k.to(torch.float32)
        qk_scale = self.qk_scale or 1.0 / math.sqrt(q.shape[-1])

        scores = torch.einsum("bthd,bshd->bhts", q, k * qk_scale)

        if key_padding_mask:
            padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")

        if causal:
            causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
            scores = scores + causal_mask.to(dtype=scores.dtype)

        attention = torch.softmax(scores, dim=-1).to(v.dtype)
        attention = self.dropout(attention)

        output = torch.einsum("bhts,bshd->bthd", attention, v)  # dim: (batch_size, seqlen, n_heads, d_head)
        return cast(torch.FloatTensor, output)


class CrossAttention(nn.Module):
    """Cross-attention layer, taken from Phi2 model."""

    def __init__(
        self,
        qk_scale: float | None = None,  # will use 1/sqrt(d) if set to None
        attention_dropout: float = 0.0,
    ) -> None:
        super().__init__()
        self.qk_scale = qk_scale
        self.dropout = nn.Dropout(attention_dropout)

    # autocast is manually disabled to avoid `torch.einsum` using float16, which might lead to overflow
    @autocast("cpu", enabled=False)
    @autocast("cuda", enabled=False)
    def forward(
        self,
        q: torch.FloatTensor,  # dim: (batch_size, seqlen_q, n_heads, d_head)
        kv: torch.FloatTensor,  # dim: (batch_size, seqlen_kv, 2, n_heads, d_head)
        causal: bool = True,
        key_padding_mask: torch.BoolTensor | None = None,
    ) -> torch.FloatTensor:
        batch_size, seqlen_q = q.shape[0], q.shape[1]
        seqlen_k = kv.shape[1]
        if kv.shape[3] != q.shape[2]:  # repeat kv n_heads dim to match q n_heads
            kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
        k, v = kv.unbind(dim=2)
        q = cast(torch.FloatTensor, q.to(torch.float32))
        k = k.to(torch.float32)
        qk_scale = self.qk_scale or 1.0 / math.sqrt(q.shape[-1])

        scores = torch.einsum("bthd,bshd->bhts", q, k * qk_scale)

        if key_padding_mask:
            padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device)
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")

        if causal:
            rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
            cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
            causal_mask = cols > rows + seqlen_k - seqlen_q
            scores = scores.masked_fill(causal_mask, -10000.0)

        attention = torch.softmax(scores, dim=-1).to(v.dtype)
        attention = self.dropout(attention)

        output = torch.einsum("bhts,bshd->bthd", attention, v)  # dim: (batch_size, seqlen_q, n_heads, d_head)
        return cast(torch.FloatTensor, output)


class MLP(nn.Module):
    """Taken from Phi2 as well."""

    def __init__(
        self,
        d_embedding: int,
        act_fn: str = "gelu_new",
    ) -> None:
        super().__init__()
        n_inner = 4 * d_embedding
        self.fc1 = nn.Linear(d_embedding, n_inner)
        self.act = ACT2FN[act_fn]
        self.fc2 = nn.Linear(n_inner, d_embedding)

    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x


@dataclass
class KVCache:
    """Options for model to calculate and store context during inference."""
    max_seqlen: int
    max_batch_size: int
    seqlen_offset: int
    batch_size_offset: int
    kv_block_map: dict[int, torch.Tensor] = field(default_factory=dict)
    lengths_per_sample: torch.Tensor | None = None


class MHA(nn.Module):
    """Multi-head attention block."""

    def __init__(
        self,
        d_embedding: int,
        n_attn_heads: int,
        block_n: int,
        initial_cos_sin_cache_len: int,  # length of cache for rotary embedding
        attn_pdrop: float,
        use_flash_rotary: bool,  # use flash rotary embedding if possible
        use_flash_attn: bool,  # use flash attention if possible
        use_fused_dense: bool,  # use fused dense layer if possible
        checkpointing: bool,  # torch.utils.checkpoint
    ) -> None:
        super().__init__()

        # rotary embedding
        rotary_cls = (
            FlashRotaryEmbedding
            if use_flash_rotary and FlashRotaryEmbedding is not None
            else RotaryEmbedding
        )
        self.rotary_emb = rotary_cls(
            # d_rotary=math.ceil((d_embedding // n_attn_heads) / 2),  # d_rotary is half of d_head
            d_rotary=32,  # TODO: figure out why Phi2 uses this
            initial_cos_sin_cache_len=initial_cos_sin_cache_len,
        )

        # self attention
        self_attn_cls = (
            FlashSelfAttention
            if use_flash_attn and FlashSelfAttention is not None
            else SelfAttention
        )
        self.inner_self_attn = self_attn_cls(attention_dropout=attn_pdrop)

        # cross attention
        cross_attn_cls = (
            FlashCrossAttention
            if use_flash_attn and FlashCrossAttention is not None
            else CrossAttention
        )
        self.inner_cross_attn = cross_attn_cls(attention_dropout=attn_pdrop)

        # MLP
        self.n_attn_heads = n_attn_heads
        self.d_head = d_embedding // n_attn_heads
        linear_cls = (
            FusedDense
            if use_fused_dense and FusedDense is not None
            else nn.Linear
        )
        self.Wqkv = linear_cls(
            d_embedding,
            self.d_head * (3 * self.n_attn_heads),  # calculating q, k, v for all heads in block simultaneously
        )
        self.fc_out = linear_cls(d_embedding, d_embedding)

        # settings
        self.using_flash_attn = self_attn_cls is FlashSelfAttention
        self.block_n = block_n
        self.checkpointing = checkpointing

    def _forward_self_attn(
        self,
        qkv: torch.FloatTensor,  # dim: (batch_size, seqlen, 3, n_heads, d_head)
        key_padding_mask: torch.BoolTensor | None,
    ) -> torch.FloatTensor:
        qkv = cast(
            torch.FloatTensor,
            torch.cat(
                [
                    self.rotary_emb(qkv[:, :, :2, :, :]),  # qk
                    qkv[:, :, 2, :, :],  # v
                ],
                dim=2,
            )
        )

        if self.using_flash_attn and unpad_input and pad_input:  # not touching flash attention code
            batch_size, seqlen = qkv.shape[0], qkv.shape[1]
            cu_seqlens, max_seqlen, indices = None, None, None

            # unpad input and retrieve `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
            if key_padding_mask:
                qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)

            if self.checkpointing:
                attn_output = torch.utils.checkpoint.checkpoint(
                    self.inner_self_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
                )
            else:
                attn_output = self.inner_self_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)

            # repad output
            if key_padding_mask:
                return pad_input(attn_output, indices, batch_size, seqlen)
            else:
                return attn_output

        if self.checkpointing:
            return torch.utils.checkpoint.checkpoint(self.inner_self_attn, qkv, key_padding_mask=key_padding_mask)
        else:
            return self.inner_self_attn(qkv, key_padding_mask=key_padding_mask)

    def _update_kv_cache(
        self,
        kv: torch.FloatTensor,  # dim: (batch_size, seqlen, 2, n_heads, d_head)
        kv_cache: KVCache,
        block_n: int,
    ) -> None:
        if block_n not in kv_cache.kv_block_map:
            kv_cache.kv_block_map[block_n] = torch.empty(
                kv_cache.max_batch_size,
                kv_cache.max_seqlen,
                2,
                kv.shape[-2],  # n_heads
                kv.shape[-1],  # d_head
                dtype=kv.dtype,
                device=kv.device,
            )
        kv_cache.kv_block_map[block_n][
            kv_cache.batch_size_offset: kv_cache.batch_size_offset + kv.shape[0],
            kv_cache.seqlen_offset: kv_cache.seqlen_offset + kv.shape[1],
            ...
        ] = kv

    def _forward_cross_attn(
        self,
        qkv: torch.FloatTensor,  # dim: (batch_size, seqlen, 3, n_heads, d_head)
        kv_cache: KVCache,
        key_padding_mask: torch.BoolTensor | None,
    ) -> torch.FloatTensor:
        qk = qkv[:, :, :2, :, :]
        qk = self.rotary_emb(
            qk,
            seqlen_offset = 0 if kv_cache is None else kv_cache.seqlen_offset,
        )
        v = cast(torch.FloatTensor, qkv[:, :, 2, :, :])
        q = qk[:, :, 0, :, :]
        kv = torch.cat(
            [
                qk[:, :, 1, :, :].unsqueeze(2),
                v.unsqueeze(2),
            ],
            dim=2,
        )
        self._update_kv_cache(kv, kv_cache, self.block_n)
        causal = False  # turning off causal mask for cross attention

        if self.using_flash_attn and unpad_input and pad_input:  # not touching flash attention code
            batch_size, seqlen_q = q.shape[0], q.shape[1]
            seqlen_k = kv.shape[1]
            cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, indices_q = (
                None,
                None,
                None,
                None,
                None,
            )

            # unpad input and retrieve `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
            if key_padding_mask:
                kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)

                if seqlen_q == 1:
                    key_padding_mask = cast(torch.BoolTensor, torch.ones(batch_size, 1, device=q.device))
                elif seqlen_q != seqlen_k:
                    key_padding_mask = cast(torch.BoolTensor, key_padding_mask[:, -seqlen_q:])

                q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)

            if self.checkpointing:
                attn_output = torch.utils.checkpoint.checkpoint(
                    self.inner_cross_attn,
                    q,
                    kv,
                    causal=causal,
                    cu_seqlens=cu_seqlens_q,
                    max_seqlen=max_seqlen_q,
                    cu_seqlens_k=cu_seqlens_k,
                    max_seqlen_k=max_seqlen_k,
                )
            else:
                attn_output = self.inner_cross_attn(
                    q,
                    kv,
                    causal=causal,
                    cu_seqlens=cu_seqlens_q,
                    max_seqlen=max_seqlen_q,
                    cu_seqlens_k=cu_seqlens_k,
                    max_seqlen_k=max_seqlen_k,
                )

            if key_padding_mask:
                return pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
            else:
                return attn_output

        if self.checkpointing:
            return torch.utils.checkpoint.checkpoint(
                self.inner_cross_attn,
                q,
                kv,
                key_padding_mask=key_padding_mask,
                causal=causal,
            )
        else:
            return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)

    def forward(
        self,
        x: torch.FloatTensor,  # dim: (batch_size, seqlen, d_embedding)
        kv_cache: KVCache | None = None,
        key_padding_mask: torch.LongTensor | torch.BoolTensor | None = None,
    ) -> tuple[torch.FloatTensor, torch.FloatTensor]:
        if key_padding_mask is not None:
            key_padding_mask = cast(torch.BoolTensor, key_padding_mask.bool())  # make sure it's bool and not int

        qkv = self.Wqkv(x)  # dim: (batch_size, seqlen, 3*n_heads*d_head)
        qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.d_head)  # dim: (batch_size, seqlen, 3, n_heads, d_head)
        if kv_cache is None:
            attn_output = self._forward_self_attn(qkv, key_padding_mask)
        else:
            attn_output = self._forward_cross_attn(qkv, kv_cache, key_padding_mask)

        output = rearrange(attn_output, "... h d -> ... (h d)")
        output = self.fc_out(output)
        return output


class ParallelAttentionBlock(nn.Module):
    """From Phi2. Calculates attention and MLP in parallel. See 'Simplifying Transformer Blocks', Fig. 1 'Parallel'."""

    def __init__(
        self,
        resid_pdrop: float,  # a bit of a misnomer, right?
        layer_norm_epsilon: float,
        d_embedding: int,
        n_attn_heads: int,
        block_n: int,
        initial_cos_sin_cache_len: int,  # length of cache for rotary embedding
        attn_pdrop: float,
        use_flash_rotary: bool = True,  # use flash rotary embedding if possible
        use_flash_attn: bool = True,  # use flash attention if possible
        use_fused_dense: bool = True,  # use fused dense layer if possible
        checkpointing: bool = False,  # torch.utils.checkpoint
    ) -> None:
        super().__init__()
        self.layer_norm = nn.LayerNorm(d_embedding, eps=layer_norm_epsilon)
        self.block_n = block_n
        self.multi_head_attention = MHA(
            d_embedding=d_embedding,
            n_attn_heads=n_attn_heads,
            block_n=block_n,
            initial_cos_sin_cache_len=initial_cos_sin_cache_len,
            attn_pdrop=attn_pdrop,
            use_flash_rotary=use_flash_rotary,
            use_flash_attn=use_flash_attn,
            use_fused_dense=use_fused_dense,
            checkpointing=checkpointing,
        )
        self.mlp = MLP(d_embedding)
        self.dropout = nn.Dropout(resid_pdrop)

    def forward(
        self,
        x: torch.FloatTensor,  # dim: (batch_size, seq_len, d_embedding)
        kv_cache: KVCache | None = None,
        key_padding_mask: torch.BoolTensor | None = None,
    ) -> torch.FloatTensor:
        residual = x
        x = self.layer_norm(x)  # each token (dim: d_embedding) is normalized individually
        attn_outputs = self.multi_head_attention(
            x,
            kv_cache=kv_cache,
            key_padding_mask=key_padding_mask,
        )
        mlp_outputs = self.mlp(x)
        return self.dropout(attn_outputs + mlp_outputs) + residual