File size: 21,069 Bytes
a420fe7 455129a a420fe7 df388cc a420fe7 df388cc a420fe7 df388cc a420fe7 df388cc a420fe7 df388cc a420fe7 df388cc a420fe7 df388cc a420fe7 df388cc a420fe7 df388cc a420fe7 df388cc a420fe7 df388cc a420fe7 3649bbb a420fe7 3649bbb a420fe7 3649bbb a420fe7 df388cc a420fe7 df388cc 3649bbb a420fe7 455129a a420fe7 3649bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
from dataclasses import dataclass, field
from einops import rearrange, repeat
import math
import torch
from torch.amp.autocast_mode import autocast
import torch.nn as nn
from transformers.activations import ACT2FN
from typing import cast
# if flash_attn exists
try:
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
from flash_attn.ops.fused_dense import FusedDense
except ImportError:
print("flash_attn not found, using default implementations")
pad_input = unpad_input = FlashRotaryEmbedding = FlashCrossAttentio = FlashSelfAttention = FusedDense = None
class RotaryEmbedding(nn.Module):
"""Rotary positional embedding (RoPE). See https://www.youtube.com/watch?v=C6rV8BsrrCc"""
def __init__(
self,
d_rotary: int,
rotary_base: float = 10000.0,
initial_cos_sin_cache_len: int = 2048,
device: torch.device | None = None,
) -> None:
super().__init__()
self.d_rotary = d_rotary
self.rotary_base = rotary_base
self.device = device
self.dtype = torch.float32
self._update_cos_sin_cache(seqlen=initial_cos_sin_cache_len)
def _update_cos_sin_cache(
self,
seqlen: int,
device: str | None = None,
dtype: torch.dtype | None = None,
) -> None:
# only call this function when seqlen is larger than _max_seqlen
self._max_seqlen = seqlen
# m * theta_i = m * base^(-2i/d) = m * (1 / base^(2i/d)), where i in [1, d/2]
m = torch.arange(
seqlen,
device=device,
dtype=torch.float32,
)
theta_i = 1.0 / (
self.rotary_base ** (
torch.arange(
start=0,
end=self.d_rotary,
step=2,
device=device,
dtype=torch.float32,
) / self.d_rotary
)
)
# torch.outer, since torch.einsum converts from fp32 to fp16 if used with torch.amp
# TODO: does this matter if I'm disabling torch.autocast?
m_theta_i = torch.outer(m, theta_i)
self._cos_cached = torch.cos(m_theta_i).to(dtype)
self._sin_cached = torch.sin(m_theta_i).to(dtype)
# TODO: scale_base caching is labelled as not yet done in Phi2
"""
if scale_base is not None:
scale = (
torch.arange(
start=0,
end=self.d_rotary,
step=2,
device=self.device,
dtype=torch.float32,
) + 0.4 * self.d_rotary
) / (1.4 * self.d_rotary)
power = (
torch.arange(seqlen, dtype=scale.dtype, device=scale.device) - seqlen // 2
) / scale_base
scale = scale.to(device=power.device) ** rearrange(power, "s -> s 1")
self._cos_cached = (torch.cos(m_theta_i) * scale).to(dtype)
self._sin_cached = (torch.sin(m_theta_i) * scale).to(dtype)
"""
def _apply_rotary_emb_qkv(
self,
x: torch.FloatTensor, # dim: (batch_size, seqlen, Optional[n_qkv], n_heads, d_head)
cos: torch.FloatTensor, # dim: (_max_seqlen, d_rotary)
sin: torch.FloatTensor, # dim: (_max_seqlen, d_rotary)
) -> torch.FloatTensor:
seqlen = x.shape[1]
x_to_rotate = x[..., :self.d_rotary]
x_to_keep_unrotated = x[..., self.d_rotary:]
x1, x2 = x_to_rotate.chunk(2, dim=-1) # dim: (batch_size, seqlen, Optional[n_qkv], n_heads, d_rotary/2)
broadcast_rearrange = "s d -> s 1 d" if x1.ndim == 4 else "s d -> s 1 1 d"
c, s = rearrange(cos[:seqlen], broadcast_rearrange), rearrange(sin[:seqlen], broadcast_rearrange)
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]] # make sure rotary embedding is in float32
x_rotated = cast(
torch.FloatTensor,
torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], dim=-1).to(x.dtype)
)
return torch.cat([x_rotated, x_to_keep_unrotated], axis=-1)
def forward(
self,
x: torch.FloatTensor, # dim: (batch_size, seqlen, Optional[n_qkv], n_heads, d_head)
seqlen_offset: int = 0, # each sequence is shifted by this amount - used in inference with KV cache
) -> torch.FloatTensor:
if (
not self._max_seqlen
or self._max_seqlen < x.shape[1] + seqlen_offset
or self._cos_cached.device != x.device
or self._cos_cached.dtype != x.dtype
or (self.training and self._cos_cached.is_inference())
):
self._update_cos_sin_cache(seqlen=x.shape[1] + seqlen_offset, device=x.device, dtype=x.dtype)
return self._apply_rotary_emb_qkv(
x,
cast(torch.FloatTensor, self._cos_cached[seqlen_offset:]),
cast(torch.FloatTensor, self._sin_cached[seqlen_offset:]),
)
class SelfAttention(nn.Module):
def __init__(
self,
qk_scale: float | None = None, # will use 1/sqrt(d) if set to None
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.qk_scale = qk_scale
self.dropout = nn.Dropout(attention_dropout)
# autocast is manually disabled to avoid `torch.einsum` using float16, which might lead to overflow
@autocast("cpu", enabled=False)
@autocast("cuda", enabled=False)
def forward(
self,
qkv: torch.FloatTensor, # dim: (batch_size, seqlen, 3, n_heads, d_head)
causal: bool = True,
key_padding_mask: torch.BoolTensor | None = None,
) -> torch.FloatTensor:
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
q, k, v = qkv.unbind(dim=2)
q = q.to(torch.float32)
k = k.to(torch.float32)
qk_scale = self.qk_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * qk_scale)
if key_padding_mask:
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.dropout(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v) # dim: (batch_size, seqlen, n_heads, d_head)
return cast(torch.FloatTensor, output)
class CrossAttention(nn.Module):
def __init__(
self,
qk_scale: float | None = None, # will use 1/sqrt(d) if set to None
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.qk_scale = qk_scale
self.dropout = nn.Dropout(attention_dropout)
# autocast is manually disabled to avoid `torch.einsum` using float16, which might lead to overflow
@autocast("cpu", enabled=False)
@autocast("cuda", enabled=False)
def forward(
self,
q: torch.FloatTensor, # dim: (batch_size, seqlen_q, n_heads, d_head)
kv: torch.FloatTensor, # dim: (batch_size, seqlen_kv, 2, n_heads, d_head)
causal: bool = True,
key_padding_mask: torch.BoolTensor | None = None,
) -> torch.FloatTensor:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
if kv.shape[3] != q.shape[2]: # repeat kv n_heads dim to match q n_heads
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
q = cast(torch.FloatTensor, q.to(torch.float32))
k = k.to(torch.float32)
qk_scale = self.qk_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * qk_scale)
if key_padding_mask:
padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
causal_mask = cols > rows + seqlen_k - seqlen_q
scores = scores.masked_fill(causal_mask, -10000.0)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.dropout(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v) # dim: (batch_size, seqlen_q, n_heads, d_head)
return cast(torch.FloatTensor, output)
class MLP(nn.Module):
def __init__(
self,
d_embedding: int,
act_fn: str = "gelu_new",
) -> None:
super().__init__()
n_inner = 4 * d_embedding
self.fc1 = nn.Linear(d_embedding, n_inner)
self.act = ACT2FN[act_fn]
self.fc2 = nn.Linear(n_inner, d_embedding)
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
@dataclass
class KVCache:
"""Options for model to calculate and store context during inference."""
max_seqlen: int
max_batch_size: int
seqlen_offset: int
batch_size_offset: int
kv_block_map: dict[int, torch.Tensor] = field(default_factory=dict)
lengths_per_sample: torch.Tensor | None = None
class MHA(nn.Module):
"""Multi-head attention block."""
def __init__(
self,
d_embedding: int,
n_attn_heads: int,
block_n: int,
initial_cos_sin_cache_len: int, # length of cache for rotary embedding
attn_pdrop: float,
use_flash_rotary: bool, # use flash rotary embedding if possible
use_flash_attn: bool, # use flash attention if possible
use_fused_dense: bool, # use fused dense layer if possible
checkpointing: bool, # torch.utils.checkpoint
) -> None:
super().__init__()
# rotary embedding
rotary_cls = (
FlashRotaryEmbedding
if use_flash_rotary and FlashRotaryEmbedding is not None
else RotaryEmbedding
)
self.rotary_emb = rotary_cls(
# d_rotary=math.ceil((d_embedding // n_attn_heads) / 2), # d_rotary is half of d_head
d_rotary=32, # TODO: figure out why Phi2 uses this
initial_cos_sin_cache_len=initial_cos_sin_cache_len,
)
# self attention
self_attn_cls = (
FlashSelfAttention
if use_flash_attn and FlashSelfAttention is not None
else SelfAttention
)
self.inner_self_attn = self_attn_cls(attention_dropout=attn_pdrop)
# cross attention
cross_attn_cls = (
FlashCrossAttention
if use_flash_attn and FlashCrossAttention is not None
else CrossAttention
)
self.inner_cross_attn = cross_attn_cls(attention_dropout=attn_pdrop)
# MLP
self.n_attn_heads = n_attn_heads
self.d_head = d_embedding // n_attn_heads
linear_cls = (
FusedDense
if use_fused_dense and FusedDense is not None
else nn.Linear
)
self.Wqkv = linear_cls(
d_embedding,
self.d_head * (3 * self.n_attn_heads), # calculating q, k, v for all heads in block simultaneously
)
self.fc_out = linear_cls(d_embedding, d_embedding)
# settings
self.using_flash_attn = self_attn_cls is FlashSelfAttention
self.block_n = block_n
self.checkpointing = checkpointing
def _forward_self_attn(
self,
qkv: torch.FloatTensor, # dim: (batch_size, seqlen, 3, n_heads, d_head)
key_padding_mask: torch.BoolTensor | None,
) -> torch.FloatTensor:
qkv = cast(
torch.FloatTensor,
torch.cat(
[
self.rotary_emb(qkv[:, :, :2, :, :]), # qk
qkv[:, :, 2, :, :], # v
],
dim=2,
)
)
if self.using_flash_attn and unpad_input and pad_input: # not touching flash attention code
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
cu_seqlens, max_seqlen, indices = None, None, None
# unpad input and retrieve `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
if key_padding_mask:
qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
if self.checkpointing:
attn_output = torch.utils.checkpoint.checkpoint(
self.inner_self_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
)
else:
attn_output = self.inner_self_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
# repad output
if key_padding_mask:
return pad_input(attn_output, indices, batch_size, seqlen)
else:
return attn_output
if self.checkpointing:
return torch.utils.checkpoint.checkpoint(self.inner_self_attn, qkv, key_padding_mask=key_padding_mask)
else:
return self.inner_self_attn(qkv, key_padding_mask=key_padding_mask)
def _update_kv_cache(
self,
kv: torch.FloatTensor, # dim: (batch_size, seqlen, 2, n_heads, d_head)
kv_cache: KVCache,
block_n: int,
) -> None:
if block_n not in kv_cache.kv_block_map:
kv_cache.kv_block_map[block_n] = torch.empty(
kv_cache.max_batch_size,
kv_cache.max_seqlen,
2,
kv.shape[-2], # n_heads
kv.shape[-1], # d_head
dtype=kv.dtype,
device=kv.device,
)
batch_start = kv_cache.batch_size_offset
batch_end = batch_start + kv.shape[0]
sequence_start = kv_cache.seqlen_offset
sequence_end = sequence_start + kv.shape[1]
# TODO: figure out why they're doing this
if sequence_end >= kv_cache.max_seqlen:
kv_cache.kv_block_map[block_n] = torch.concatenate(
(kv_cache.kv_block_map[block_n], kv),
dim=1,
)
kv_cache.kv_block_map[block_n][
batch_start:batch_end,
sequence_start:sequence_end,
...
] = kv
kv = kv_cache.kv_block_map[block_n][
batch_start:batch_end,
:sequence_end,
...
]
return kv
def _forward_cross_attn(
self,
qkv: torch.FloatTensor, # dim: (batch_size, seqlen, 3, n_heads, d_head)
kv_cache: KVCache,
key_padding_mask: torch.BoolTensor | None,
) -> torch.FloatTensor:
qk = qkv[:, :, :2, :, :]
qk = self.rotary_emb(
qk,
seqlen_offset = 0 if kv_cache is None else kv_cache.seqlen_offset,
)
v = cast(torch.FloatTensor, qkv[:, :, 2, :, :])
q = qk[:, :, 0, :, :]
kv = torch.cat(
[
qk[:, :, 1, :, :].unsqueeze(2),
v.unsqueeze(2),
],
dim=2,
)
kv = self._update_kv_cache(kv, kv_cache, self.block_n)
causal = (kv_cache.seqlen_offset == 0)
if self.using_flash_attn and unpad_input and pad_input: # not touching flash attention code
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, indices_q = (
None,
None,
None,
None,
None,
)
# unpad input and retrieve `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
if key_padding_mask:
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
if seqlen_q == 1:
key_padding_mask = cast(torch.BoolTensor, torch.ones(batch_size, 1, device=q.device))
elif seqlen_q != seqlen_k:
key_padding_mask = cast(torch.BoolTensor, key_padding_mask[:, -seqlen_q:])
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
if self.checkpointing:
attn_output = torch.utils.checkpoint.checkpoint(
self.inner_cross_attn,
q,
kv,
causal=causal,
cu_seqlens=cu_seqlens_q,
max_seqlen=max_seqlen_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_k=max_seqlen_k,
)
else:
attn_output = self.inner_cross_attn(
q,
kv,
causal=causal,
cu_seqlens=cu_seqlens_q,
max_seqlen=max_seqlen_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_k=max_seqlen_k,
)
if key_padding_mask:
return pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
else:
return attn_output
if self.checkpointing:
return torch.utils.checkpoint.checkpoint(
self.inner_cross_attn,
q,
kv,
key_padding_mask=key_padding_mask,
causal=causal,
)
else:
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
def forward(
self,
x: torch.FloatTensor, # dim: (batch_size, seqlen, d_embedding)
kv_cache: KVCache | None = None,
key_padding_mask: torch.LongTensor | torch.BoolTensor | None = None,
) -> tuple[torch.FloatTensor, torch.FloatTensor]:
if key_padding_mask is not None:
key_padding_mask = cast(torch.BoolTensor, key_padding_mask.bool()) # make sure it's bool and not int
qkv = self.Wqkv(x) # dim: (batch_size, seqlen, 3*n_heads*d_head)
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.d_head) # dim: (batch_size, seqlen, 3, n_heads, d_head)
if kv_cache is None:
attn_output = self._forward_self_attn(qkv, key_padding_mask)
else:
attn_output = self._forward_cross_attn(qkv, kv_cache, key_padding_mask)
output = rearrange(attn_output, "... h d -> ... (h d)")
output = self.fc_out(output)
return output
class ParallelAttentionBlock(nn.Module):
"""Calculates attention and MLP in parallel."""
def __init__(
self,
resid_pdrop: float, # a bit of a misnomer, right?
layer_norm_epsilon: float,
d_embedding: int,
n_attn_heads: int,
block_n: int,
initial_cos_sin_cache_len: int, # length of cache for rotary embedding
attn_pdrop: float,
use_flash_rotary: bool = True, # use flash rotary embedding if possible
use_flash_attn: bool = True, # use flash attention if possible
use_fused_dense: bool = True, # use fused dense layer if possible
checkpointing: bool = False, # torch.utils.checkpoint
) -> None:
super().__init__()
self.layer_norm = nn.LayerNorm(d_embedding, eps=layer_norm_epsilon)
self.block_n = block_n
self.multi_head_attention = MHA(
d_embedding=d_embedding,
n_attn_heads=n_attn_heads,
block_n=block_n,
initial_cos_sin_cache_len=initial_cos_sin_cache_len,
attn_pdrop=attn_pdrop,
use_flash_rotary=use_flash_rotary,
use_flash_attn=use_flash_attn,
use_fused_dense=use_fused_dense,
checkpointing=checkpointing,
)
self.mlp = MLP(d_embedding)
self.dropout = nn.Dropout(resid_pdrop)
def forward(
self,
x: torch.FloatTensor, # dim: (batch_size, seq_len, d_embedding)
kv_cache: KVCache | None = None,
key_padding_mask: torch.BoolTensor | None = None,
) -> torch.FloatTensor:
residual = x
x = self.layer_norm(x) # each token (dim: d_embedding) is normalized individually
attn_outputs = self.multi_head_attention(
x,
kv_cache=kv_cache,
key_padding_mask=key_padding_mask,
)
mlp_outputs = self.mlp(x)
x = self.dropout(attn_outputs + mlp_outputs) + residual
return x
|